Ming Zhang “ Data Structures and Algorithms *“

T -
>

Data Structures
and Algorithms (2)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Linear List Linear List

Chapter II Linear Lists

. 2.1 Linear list {ag, a4, ...,an_1}

- 2.2 Sequential list[a[a,], = ... a..
. 2.3 Linked llst o
head —p a, M Ay | ——> cccccces >| a,; (

. 2.4 Comparison of sequential list and
linked list

Ming Zhang” Data Structures and Algorithms “

B Chovter | |

Linear List | 2 1 [inear List

The Concepts of Linear List

List for short, is a finite sequence of zero or
more elements, usually represented as k; , ky,
- 1<]_’1-1 (n > 1)

- Entries: elements of linear list (can contain multiple
data items, records)

- Index: i is called the "Index" of entry ki

- Length of the list: the number of elements contained
in the list n s

- Empty list: a linear list with the length of zero (n = 0)

Features of Linear list:
- Flexible operations

- Dynamically changed length

e s Ming Zhang” Data Structures and Algorithms *

oo

Linear List | 2.1 Linear List

Linear structure

Tuple B = (K,R) K ={ay,a4,...,a,,_1} R ={r}
- There is one and only one starting point that has no
previous node and has only one successive node.

- There is one and only one ending point that has only
one previous node and has no successive node.

- The other nodes are called internal nodes that have
only one previous node and also have only one
successive node.

<a,;,a;,1> q; is previous node of a;,; , and a,,; is the successive
node of a;

Internal Tail
Head o \ @ @j41 N

BN Chevrer !

Linear List Features

Linear structure

- Features

v' Uniformity: Although the data elements of different
linear lists may be diverse, but the data elements of the
same linear list normally have the same data type and
length

v' Orderliness: each data element has its own position in
the list and their relative positions are linear

Ming Zhang” Data Structures and Algorithms “

_ Chapter II
Linear List | C]assification

Linear structure

Linear Structure

. According to the complexity
- Simple: Linear lists, stacks, queues, hash tables /I\

- Advanced: generalized liStS, Direct access Sequential access | | Directory access
multidimensional arrays, files etc. /‘\ /\
- Divided by dCCESS WAys Vector Entry ictionary] | HashTable
- Direct access type / \\
- Sequential access type Sequential Al Gener}l{ize il
- Contents Index type ~7 X
(directory access) Stack Queue

Linked List

e s Ming Zhang” Data Structures and Algorithms *

oo

Linear List | Classification

Linear structure

- Classified by operation (see later)

-Linear List
- All entries are nodes of the same type of linear lists
- No need to limit the form of operation

- Divided into: the sequential list, linked list depending on the
difference of storage

-Stack (LIFO, Last In First Out)

Insert and delete operations are restricted to the same end of the list

-Queue (FIFO, First In First Out)

Insert at one end of the list, while delete at the other end

e Ming Zhang” Data Structures and Algorithms *

_ Chapter II
Linear List | 2 1 Ljnear List

2.1 Linear List

- Three aspects

- Logical structure of the linear list
- Storage structure
- Operation of linear list

Ming Zhang” Data Structures and Algorithms “

BN Chooter ! |

Linear List | 2 1 Linear List

Logical structure of the linear list

- The main properties

- Length
- Head
- Tail
- Current position
Current position Tail
Head %o NG Ai+1 \an—l
— > 000000 00y il N 1 cecees _P:N

e 0 Ming Zhang” Data Structures and Algorithms *

N Chovter !

Linear List 2.1 Linear List

Classification (By storage)

- Linear List

- All entries are nodes of the same type of linear lists
- No need to limit the form of operation

- Divided into: the sequential list, linked list
depending on the difference of storage

N Chevter ! |

Linear List 2.1 Linear List

Storage Structures

- Sequential list

- Store according to index values from small to large in
an adjacent continuous region

- Compact structure, and the storage density is 1

. Linked list

- Sll’lgle llSt — > p— RN e
- Double linked list —t | F—=F | T ssaese— —
- Circular list — LT

_ 11 Ming Zhang” Data Structures and Algorithms *“

BN Chovrer |

Linear List | 2 1 Linear List

Classification (By operation)

- Linear List

- No need to limit the form of
operation

. Stack

- At the same end

- Queue
- At both ends

_ 12 Ming Zhang” Data Structures and Algorithms *“

BN Chovrer !

Linear List | 2 1 Linear List

Classification (By operation)
. Stack (LIFO, Last In First Out)

- Insert and delete operations are restricted
to the same end of the list

Out In
AW
ki+1

Ming Zhang” Data Structures and Algorithms “

oo

Linear List 2.1 Linear List

Classification (By operation)

- Queue (FIFO, First In First Out)

- Insert at one end of the list while delete at
the other end

- Rear(true pointer)

Delete Insert
frtmerontI rearlrearl

elg|p|[pD|

Ming Zhang” Data Structures and Algorithms “

B Chooter !

Linear List | 2 1 Linear List

Operation on linear Lists

. Construct a linear list

. Destruct the linear list

- Insert a new element

- Delete a specific element
- Modify a specific element
- Sort

. Search

Ming Zhang” Data Structures and Algorithms “

_ Chapter II
Linear List | 2 1 Linear List

Class Template of Linear lists

template <class T> class List {
void clear(); // clear the linear list
bool isEmpty(); // When it is empty, returns true
bool append(const T value);
// insert the value at the end , length adds by 1
bool insert(const int p, const T value);
// insert the value at position P, length adds by 1
bool delete(const int p);
// delete the value at position p , length decreases by 1
bool getPos(int& p, const T value);
// find the value and returns its position
bool getValue(const int p, T& value);
// return the element’s value at position P
//and assign it to the variable of value
bool setValue(const int p, const T value);
// set value for position P

_ 16 Ming Zhang” Data Structures and Algorithms *“

B Chovter | |

Linear List

Thinking

. What kind of classification are
there for the linear list?

. In all kinds of names of linear lists
, which are related to storage
structures? Which are related to
operations?

_ 17 Ming Zhang” Data Structures and Algorithms *“

Chapter Il Linear List

. 2.2 Sequential List 4 4 & | .. a,}

I 18 iR (BIREHISEE)

B Chovcer | |

Linear List | 2.2 Sequential List

2.2 Sequential List

Also known as the vector, fixed-length one-
dimensional array is used as the storage structure

Key Features

- Elements are of the same type

- Elements are sequentially stored in contiguous storage
space, and each element has a unique index value

- The type of vector length is constant
Implemented as Array

Its elements are easy to read and write, you can
specify the location by using its subscript

- Once the starting position is got, all the data elements of
the list can be random accessed

_ 19 Ming Zhang” Data Structures and Algorithms *“

N Chovter !
2

Linear List .2 Sequential List

2.2 Sequential List

. The formula to calculate the elements of location is shown as below:

- Loc(k;) = Loc(ky) + ¢ X i, ¢ = sizeof(ELEM)

Logical Data Store Address Data
Address elements elements
(Subscript)
1 Kk, Loc(ky)+c Kk,
i k; Loc(ky)+i*c k;
n-1{ k., Loc(ky)+(n-1)*c |

Zhang Ming ” Data Structures and Algorithms “

_ Chapter II
Linear List| Linear List

Sequence List’s Class Definition

class arrList : public List<T> { // sequential list , vector
private: // value types and value space of linear list
T * aList ; // private variables , instance of storage for sequential list
int maxSize; // private variables , maximum length of the sequential list
int curLen; // private variables , current length of the sequential list
int position; // private variables , current operation location
public:

arrList(const int size) { // construct a new list, set its length to the maximum
maxSize = size; alist = new T[maxSize];
curLen = position = 0;

}

~arrList() { // destructor function used to eliminate the instance
delete [] aList;

}

u

Zhang Ming ” Data Structures and Algorithms

_ Chapter I1
Linear Listl 2.2 Sequential List

Sequence List’s Class Definition

void clear(){ // delete the content , becoming an empty list
delete [] aList; curLen = position = 0;
alList = new T[maxSize];

}

int length(); // returns the current length
bool append(const T value); // append element v at end
bool insert(const int p, const T value); //insert an element at P

bool delete(const int p); // delete the element at P
bool setValue(const int p, const T value); // set the value of an element
bool getValue(const int p, T& value); // return the value of an element

bool getPos(int &p, const T value); // seek for an element

_ 22 Zhang Ming” Data Structures and Algorithms *

N Chovter !
2

Linear List .2 Sequential List

Operations in Sequential List

- Key discussions
- Insert element operation
- bool insert(const int p, const T value);
- Delete element operation
- bool delete(const int p);

. Others (Think by yourselves)

Zhang Ming ” Data Structures and Algorithms “

N Chorter I
2

Linear Listl 2.2 Sequential List

Diagram for the insertion of sequential list

kQ kQ

kl kl

x curr iz curr iz
3 — 3

Zhang Ming” Data Structures and Algorithms “

_ Chapter II

Linear List | 2.2 Sequential List

Insertion of sequential list

// set the element type as T, alist is the array to store Sequential list ,
// maxSize is its maximum length ;
// p is the insert location of the new element , return true if succeeds,
// otherwise return false
template <class T> bool arrList<T> :: insert (const int p, const T value) {

int i;

if (curLen >= maxSize) {// check if the SL is overflow

cout << "The list is overflow"<< endl; return false;

if (p<0|| p>curlLen) { // check if the position to insert is valid
cout << "Insertion point is illegal"<< endl; return false;

}

for (i = curLen; i > p;i--)
aList[i] = aList[i-1]; // move right from the end curlLen -1 of the

list until p

aList[p] = value; // insert a new element at p

curLen++; // adds the current length of the list by 1

return true;

_ 25 Zhang Ming ” Data Structures and Algorithms *

B Chovter !

Linear List | 2.2 Sequential List

Diagram for sequential list’s delete operation

. 2.2 Sequential List

Ko Ko
K, K,
curr llzz curr ll:Z
|2 K,
Ks g K
Ke K

Zhang Ming ” Data Structures and Algorithms “

_ Chapter II

Linear List | 2.2 Sequential List

Delete operation 1n sequential list

// set the type of the element as T ; aLis is the array to store sequential list
// and p is the position of elements to delete
// returns true when delete succeed , otherwise returns false

template <class T> // the type of the elements of SLis T
bool arrList<T> :: delete(const int p) {

int 1;

if (curLen <=0) { // Check if the SL is empty

cout << " No element to delete \n"<< endl;
return false ;
}
if(p<O]|lp>curlLen-1) { // Check if the position is valid
cout << "deletion is illegal\n"<< endl,;
return false ;

}
for (i =p; i< curlen-1; i++)

aList[i] = aList[i+1]; // [p, currLen) every element move left
curLen--; // the current length of the list decreases by 1

return true;

_ 27 Zhang Ming ” Data Structures and Algorithms *

B Chovter !

Linear List | 2.2 Sequential List

Algorithm analysis of insert and

delete operations 1n sequential list
. The movement of elements in the list

- Insert: move n —i

- Delete: move n—i—1

- The probability values to insert or delete in
position i are respectively p; and p;’

- The average move time for insert operation is

M; = Xi—o(n —Dp;

- The average move time of delete operation is

My =X (n—i—Dp,

D s 3 (RIS i)

BN Chooter ! |

Linear List | 2.2 Sequential List

Algorithm Analysis

If the probability to insert or delete in every location in

1 ;1
SL is th , 1 = =
is the same, namely P; -y Pi
. n—i)= n—
M: n+1z()= (Z .Z
~n(n+1) n(n +1) _ﬂ
n+l 2(n+1) 2
1 n 1 n n
M, =—>» (n-1-1)==(> n—)> 1—n) _
‘ nZo: n Zo = Time cost
2 .
n (=D ,_n-t is O(n)
n 2 2

I 20 3 (RIS i)

N Chovter !

Linear List | 2.2 Sequential List

Thinking

- What should you think about when
doing insert or delete operations in
sequential list ?

- What advantages and disadvantages
does sequential list have?

Zhang Ming ” Data Structures and Algorithms “

_ Chapter II
Linear List | 2.3 Linked List

Chapter II Linear List

. 2.1 Linear List
. 2.2 Sequential List
. 2.3 Linked List tail

head ﬁ P ao P al ——) 00000000) an'l (

. 2.4 Comparison between
sequential list and linked list

I s 3 (MIREIISHIL)

B Chevter I
Linear List | 2.3 Linked List

Linked List

. Link its storage nodes through pointers

. Storage nodes are consisted of two

parts
- Data field + pointer field (successor
address)
data | next

I 32 B (MIREIS L)

B Cheoter !

Linear List | 2.3 Linked List

2.3 Linked List

. Classification (according to linked
ways and the number of points)

]]] tail
- Single linked list /
head L —— > d, > a, ——) 00000000) 2 dn1
. . tail
- Double linked list e
head | [] T ol [am
. .. . tail
- Circular linked list al
{
head—> | p > Ay | e a, (> a, . —J
| A

I 53 B (MIREIS L)

BN Chavter ! |
2.3 Linked List

Linear List

Single linked list

- Simple single linked list
- The whole single linked list : head
- The first node : head
- The judge of empty list :
head == NULL
- The current node a, : curr

curr \ tail
=t

head —— a, b @ | ——> cccccccs >| a,

N 34 B (MIREIS L)

B Chevter I
Linear List | 2.3 Linked List

Single linked list

- Single linked list with head node
- The whole single linked list : head
- The first node : head->next, head = NULL
- The judge of empty list :
- head->next == NULL

- The current node a, : fence->next (curr
implied)
fence \ curr\l tail

head L —— > ao > al ——) 00000000 >» an-l

I 35 B (MIREIS L)

_ Chapter II
Linear List | 2.3 Linked List

Iinked list

template <class T> class Link {
public:
T data; // to protect content of the node elements
Link<T> * next; // the pointer which points to successor point

Link(const T info, const Link<T>* nextValue =NULL) {
data = info;
next = nextValue;

}

Link(const Link<T>* nextValue) {
next = nextValue;
}

I 36 B (MIREIISHIL)

o] e [
2.3 Linked List

Linear List

Class definition of single list

template <class T> class InkList : public List<T> {

private:

Link<T> * head, *tail; // head and tail pointer of the single list
Link<T> *setPos(const int p); // the pointer of the pth element

public:

InkList(int s); // constructed function

~InkList(); // destructor

bool isEmpty(); // judge whether the link is empty

void clear(); // clear the link’s storage and it becomes an empty list
int length(); // returns the current length of the sequential list
bool append(cosnt T value); // add an element value at the end ,

// the length of the list added by 1
bool insert(cosnt int p, cosnt T value); // insert an element at p
bool delete(cosnt int p); // delete the element at p ,

// the length of the list decreased by 1
bool getValue(cosnt int p, T& value); // get the value of the element at p
bool getPos(int &p, const T value); // seek for element with value T

}
L 57 3 (RIS i)

_ Chapter II
Linear List | 2.3 Linked List

Seek the ith node in the single linked list

// the return value of the function is the found node pointer
template <class T> // the element type of the linked list is P
Link<T> * InkList <T>:: setPos(int i) {
int count = 0;
if i ==-1) // if i was -1, then locate it to the head
return head;
// circular location, if I was 0 then locate to the first node
Link<T> *p = head->next;
while (p '= NULL && count <1i) {
P = p-> next;
count++;
5
// points to the ith node , i=0,1,... , when the number of
// the nodes of the list is less than i then return NULL
return p;
}
DN ss

BN Chavrer ! |
Linear List | 2.3 Linked List

Insert operation of single linked list

tail
head ——p » 20 » 23 > 12 | edececes >» 15
Insert 10 between 23 and 12
tail
head ——p » 20 > 23 » 10 > 12 | edeccccs > 15(

. Create a new node
- New node points to the right node
- The left node points to new node

_ 39 Zhang Ming " Data Structures and Algorithms “

_ Chapter II
Linear List | 2.3 Linked List

Insert algorithm of single linked list

// insert a new node as the ith node
template <class T>
// element type of the linked listis T
bool InkList<T> :: insert(const int i, const T value) {
Link<T> *p, *q;
if ((p = setPos(i -1)) == NULL) { // pis the previous node of the ith node
cout << "illegal insert position"<< endl;
return false;
}
g = new Link<T>(value, p->next);
p->next = q;
if (p == tail) // insert position is at the tail and
// the node inserted becomes the new tail
tail = q;
return true;

}
I 40 3 (RIS HIE)

B Choote !
2.3 Linked List

Linear List

Delete operation of single linked list

- Delete the node x from linked list

- 1. Assign p to point to the previous node of
element x

- 2. delete the node with element x
- 3. release the space that x occupied

I e (MRS EL)

B Cheoter [

Linear List | Linear List

Example of delete operation of single linked list

. 2.3 Linked List tail
head —» > > | X | edececsces >
/
p
p = head;

while (p->next!=NULL && p->next->info!= x)
p = p->next,

I 42 e (MRS EL)

I L—

______________ Chapter II | LinearList
Delete the node with value X
. 2.3 Linked List il
head —p > ,——>/x\: edescces > (
e

q = p->hext;
p->next = g->next;
free(q);

I 43 3 (RIS i)

_ Chapter II
Linear List | 2.3 Linked List

Delete algorithm of single linked list

template <class T> // Element type of the linked listis T
bool InkList<T>:: delete((const int i) {
Link<T> *p, *q;
// node to delete doesn’t exist, when the given i is bigger than
// the number of the current elements in the list
if ((p = setPos(i-1)) == NULL || p == tail) {
cout << "illegal delete position " << endl;
return false;

}
g = p->next; // q is the real node to delete
if (q == tail) { // if the node to delte is the tail,
// then change the tail pointer
tail = p; p->next = NULL:
}
else //delete node q and change linked pointer
p->next = g->next;
delete q;

return true;

}
I 44 et (MIRENSEL)

o] e [
2.3 Linked List

Linear List

Operation analysis of single linked list

To operate on a node you must find it first, which means to get a pointer address

° To find any node in single linked list you must begin from the first node

p = head;
while (not reaching) p = p->next;
® The time complexity 0 (n)
— locating : O(Tl)

~insert . O(M)+0(1)
- delete . O(n) + 0(1)

I 45 3 (RIS i)

BN Chater I
Linear List | 2.3 Linked List

Double linked list

« To make up the disadvantages of single linked
list, double linked list appears.

« The next field of single linked list only points to
the previous node , it can not be used to find
the successive node. The same for “single prev”.

« S0, we add a pointer that points to the
precursor node of it in the double linked list.

prev | data | next il

head_> < > a() ——) 000000 »

| —— (o ooooo g al’l' 1

I 46 3 (RIS i)

o] e [
2.3 Linked List

Linear List

Double linked list and type of its node

template <class T> class Link {

public:
T data; // used to store content of node elements
Link<T> * next; // the pointer points to successor node
Link<T> *prev; // the pointer points to precursor node
Link(const T info, Link<T>* preValue = NULL, Link<T>* nextValue =
NULL) {
// constructor with given value and precursor and successor pointers
data = info;

next = nextValue;
prev = preValue;

}

Link(Link<T>* preValue = NULL, Link<T>* nextValue = NULL) {
// constructor with given value and precursor and successor pointers
next = nextValue;
prev = preValue;

}

}

I 47 e (MRS EL)

_ Chapter II _
Linear List | 2.3 Linked List

Insert procedure of double linked list (Be careful with the order)

Insert a new node after the node pointed by p

new (; / ® l@> @

g->next=p->next
q->prev=p /
pP->next=q

J->next->prev=q

D s

Zhang Ming " Data Structures and Algorithms “

BN Chavrer ! |
Linear List | 2.3 Linked List

Delete procedure

--l__> —--——» ——

p’/ ©

Delete the node pointed by p - If you delete p

p->prev->next=p->next immediately
p->next->prev=p->prev - Do not need to
p->next=NULL assign the null
p->prev=NULL value

_ 49 Zhang Ming ” Data Structures and Algorithms “

BN Chepter !l
Linear List | 2.3 Linked List

Circularly linked list

- Link the head and tail of single linked list and
double linked list, and we created circular lists

- Do not increase other cost, but benefit lots of
operations

- From any node of circular list you can access all
the other nodes

tail

0 |
head < > aO < > a]_ ooo(oooo) an_]_ _

N

I so B (MIREIS L)

. o e

Linear List | 2.3 Linked List

Treatment of solnje]%:]&gdoljeslt

- Treatment with the head node

- Pointer field of the tail node of a non-circular list
should be kept as NULL

- Tail of a circular list points to its head pointer
Treatment with linked list
- Special treatment with empty linked list

- When insert or delete nodes, be careful with the
linking process of the related pointers

- The correctness of points moving

- insert
. search or iteration

I s B (MIREIS L)

B Chepter I
2.3 Linked List

Linear List

Thinking
- Think about the single linked list

with head or not.

.- The problems you should consider
when deal with linked list.

I 52 B (MIREIS L)

_ Chapter II

Linear List

Chapter II Linear List

.- 2.4 Comparison between
sequential list and linked list

I ss B (MIREIISHIL)

Chapter II
Linear List

2.4 Comparison of linear list’s achieving ways

2.4 Comparison of the implementation method of linear list

Main advantages of sequential lists

- No pointers, and no overhead cost
- Read an element in a sequential list is quite easy and

convenient
Main advantages of linked list

- No need to know the list length list before construction
- The length of the linked list can be dynamically changed

- Support frequent insert and delete operations

To sum up

- Sequential list is the best choice for storing static data
- Linked list is a good choice for storing dynamic data

N 54 B (MIREIS L)

B T ———

Linear List .4 Comparison of linear list’s achieving ways

Comparison between sequential list and linked list

Sequential list

- Time cost of insert and delete operation is O(n) , search of
ith element can be done in constant time.

- You must apply for continuous storage space with fixed
length previously

- If the whole array is full there will be no structural storage
cost

Linked list

- Time cost of insert and delete operation is O(1) , but the
cost for finding the ith element is O(n)

- Uses pointers for storage, you need to assign storage space
dynamically to the new elements per demand

- Every element has overhead storage cost

I ss B (MIREIS L)

B T ———

Linear List .4 Comparison of linear list’s achieving ways

Storage density of Sequential list and linked list

n means the current number of elements in linear list

P means the size of the storage space of the pointer (
usually 4 bytes)

E means the size of the storage space of the data element

D means the maximum number of linked list elements that
can be stored in array

Space requirement
- Space requirement of sequential list is DE
- Space requirement of linked list is n(P + E)
The critical value of n , namely n > DE / (P+E)

- The bigger the n, the higher the space efficiency of
sequential list

- If P=E , then the critical valueisn=D / 2
dss kil (EURS

B Chovter !
2

Linear List .4 Comparison of linear list’s achieving ways

The choice in different situations

- Situations sequential list not fit
- Insert or delete operations are frequent

- The maximum length of the linear list is also a
vital consideration

. Situations linked list not fit

- When read operation is more frequen than
insert or delete operations

- When the storage cost of the pointer is
relatively big compared to the occupied space
of the attributes of a node , think carefully.

I 57 B (MIREIS L)

B Chovter !

Linear List | 2.4 Comparison of linear list’s achieving ways

Choice between Sequential list and linked list

- Sequential list
- The number of nodes can be estimated
- The nodes are relatively stable
(insert and delete operation are not frequent)
- n>DE/ (P + E)

. Linked list

- The number of nodes cannot be estimated
- The node are dynamic

(insert and delete operation are frequent)
- n<DE/ P+ E)

I s B (MIREIS L)

B Chooter !
L

Chapter II inear List

Thinking

. Choose between sequential list
and linked list.
- Dynamic change of nodes
- Storage density

I s B (MIREIS L)

B Chootr !
2

Linear List .4 Comparison of linear list’s achieving ways

Thinking : expression of polynomial with one variable

Polynomial with one variable: P, (x) = py+p;X+pP,X°+...+p, X"
Linear list expression : P = (py, Py, P2y ---» Pp)

Sequential list expression : only save the coefficient (the ith element save X’s

coefficient) I 4
Po |P1 R2

...... -]

the situation when the data is sparse: p(x) = 1+2x1000044x40000

Linked list expression : node structure
coef. |index| —+—
0+l 1| O > 210000 > 4 140000

I o B (MIREIS L)

Ming Zhang “ Data Structures and Algorithms *“

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

