
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang“ Data Structures and Algorithms “

Data Structures
and Algorithms（2）

Instructor: Ming Zhang

Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

2

目录页

Ming Zhang” Data Structures and Algorithms “

Chapter II Linear Lists

• 2.1 Linear list

• 2.2 Sequential list

• 2.3 Linked list

• 2.4 Comparison of sequential list and

linked list

Linear List
Linear List

a0 a1 a2 … … an-1

a
0

a
1

a
n-1

head

tail

{𝑎0, 𝑎1, … , 𝑎𝑛−1}

3

目录页

Ming Zhang” Data Structures and Algorithms “

The Concepts of Linear List

• List for short, is a finite sequence of zero or

more elements, usually represented as k
0
，k

1
,

…，k
n-1
（n ≥ 1）

– Entries: elements of linear list (can contain multiple

data items, records)

– Index: i is called the "Index" of entry ki

– Length of the list: the number of elements contained

in the list n

– Empty list: a linear list with the length of zero (n = 0)

• Features of Linear list:

– Flexible operations

– Dynamically changed length

2.1 Linear List
Linear List

Chapter II

4

目录页

Ming Zhang” Data Structures and Algorithms “

Linear structure

• Tuple 𝐵 = 𝐾, 𝑅 𝐾 = {𝑎0, 𝑎1, … , 𝑎𝑛−1} 𝑅 = {𝑟}
– There is one and only one starting point that has no

previous node and has only one successive node.

– There is one and only one ending point that has only

one previous node and has no successive node.

– The other nodes are called internal nodes that have

only one previous node and also have only one

successive node.

<a
i
,a

i+1
> a

i
is previous node of a

i+1
, and a

i+1
is the successive

node of a
i

2.1 Linear ListLinear List

Chapter II

5

目录页

Ming Zhang” Data Structures and Algorithms “

Linear structure

• Features

 Uniformity: Although the data elements of different

linear lists may be diverse, but the data elements of the

same linear list normally have the same data type and

length

 Orderliness: each data element has its own position in

the list and their relative positions are linear

Features
Linear List

Chapter II

6

目录页

Ming Zhang” Data Structures and Algorithms “

• According to the complexity

- Simple: Linear lists, stacks, queues, hash tables

- Advanced: generalized lists,

multidimensional arrays, files etc.

• Divided by access ways

– Direct access type

– Sequential access type

– Contents Index type

(directory access)

Linear structure

Classification
Linear List

Chapter II

Linear Structure

Direct access Sequential access Directory access

Vector Entry Dictionary HashTable

Sequential File Generalized Table

Queue
Stack

Linked List

7

目录页

Ming Zhang” Data Structures and Algorithms “

Linear structure

• Classified by operation (see later)

-Linear List

• All entries are nodes of the same type of linear lists

• No need to limit the form of operation

• Divided into: the sequential list, linked list depending on the

difference of storage

-Stack (LIFO, Last In First Out)

Insert and delete operations are restricted to the same end of the list

-Queue (FIFO, First In First Out)

Insert at one end of the list, while delete at the other end

Classification
Linear List

Chapter II

8

目录页

Ming Zhang” Data Structures and Algorithms “

2.1 Linear List

•Three aspects

- Logical structure of the linear list

- Storage structure

- Operation of linear list

2.1 Linear List
Linear List

Chapter II

9

目录页

Ming Zhang” Data Structures and Algorithms “

Logical structure of the linear list

• The main properties

– Length

– Head

– Tail

– Current position

2.1 Linear List
Linear List

Chapter II

𝑎𝑖 𝑎𝑖+1
……

𝑎0 𝑎𝑛−1Head

Current position Tail

……

10

目录页

Ming Zhang” Data Structures and Algorithms “

Classification (By storage)

• Linear List

– All entries are nodes of the same type of linear lists

– No need to limit the form of operation

– Divided into: the sequential list, linked list

depending on the difference of storage

2.1 Linear List
Linear List

Chapter II

……

……

11

目录页

Ming Zhang” Data Structures and Algorithms “

Storage Structures

• Sequential list

- Store according to index values from small to large in

an adjacent continuous region

- Compact structure, and the storage density is 1

• Linked list

- Single list

- Double linked list

- Circular list

2.1 Linear List
Linear List

Chapter II

……

……

……

……

12

目录页

Ming Zhang” Data Structures and Algorithms “

Classification (By operation)

• Linear List

– No need to limit the form of

operation

• Stack

– At the same end

• Queue

– At both ends

2.1 Linear List
Linear List

Chapter II

13

目录页

Ming Zhang” Data Structures and Algorithms “

Classification (By operation)

• Stack (LIFO, Last In First Out)

– Insert and delete operations are restricted

to the same end of the list

2.1 Linear List
Linear List

Chapter II

k
1

...

k
i

k
i+1

Top

End

Out In

k
0

14

目录页

Ming Zhang” Data Structures and Algorithms “

Classification (By operation)

• Queue (FIFO, First In First Out)

– Insert at one end of the list while delete at

the other end

2.1 Linear List
Linear List

Chapter II

• Rear(true pointer)

A B C D

front rear

Insert
rear

Delete
front

B C D

rearfront

15

目录页

Ming Zhang” Data Structures and Algorithms “

Operation on linear Lists

• Construct a linear list

• Destruct the linear list

• Insert a new element

• Delete a specific element

• Modify a specific element

• Sort

• Search

• …

2.1 Linear List
Linear List

Chapter II

16

目录页

Ming Zhang” Data Structures and Algorithms “

Class Template of Linear lists

2.1 Linear List
Linear List

Chapter II

template <class T> class List {

void clear(); // clear the linear list

bool isEmpty(); // When it is empty, returns true

bool append(const T value);

// insert the value at the end，length adds by 1

bool insert(const int p, const T value);

// insert the value at position P，length adds by 1

bool delete(const int p);

// delete the value at position p，length decreases by 1

bool getPos(int& p, const T value);

// find the value and returns its position

bool getValue(const int p, T& value);

// return the element’s value at position P

//and assign it to the variable of value

bool setValue(const int p, const T value);

// set value for position P

};

17

目录页

Ming Zhang” Data Structures and Algorithms “

Thinking

• What kind of classification are

there for the linear list?

• In all kinds of names of linear lists

，which are related to storage

structures? Which are related to

operations?

Linear List

Chapter II

18

第二章

张铭《数据结构与算法》

线性表

• 2.1 Linear List

• 2.2 Sequential List

• 2.3 Linked List

• 2.4 Comparison between sequential list and linked list

Chapter II Linear List

a0 a1 a2 … … an-1

Chapter II

19

目录页

Ming Zhang” Data Structures and Algorithms “

2.2 Sequential List

• Also known as the vector, fixed-length one-

dimensional array is used as the storage structure

• Key Features

- Elements are of the same type

- Elements are sequentially stored in contiguous storage

space, and each element has a unique index value

- The type of vector length is constant

• Implemented as Array

• Its elements are easy to read and write, you can

specify the location by using its subscript

- Once the starting position is got, all the data elements of

the list can be random accessed

2.2 Sequential ListLinear List

Chapter II

20

目录页

Zhang Ming ”Data Structures and Algorithms “

2.2 Sequential List

• 元素地址计算如下所示：
– L𝑜𝑐 𝑘𝑖 = 𝐿𝑜𝑐 𝑘0 + 𝑐 × 𝑖, 𝑐 = sizeof(𝐸𝐿𝐸𝑀)

2.2 Sequential ListLinear List

Chapter II

Logical
Address
(Subscript)

Data
elements

Store Address Data
elements

0 k
0

Loc(k
0
) k

0

1 k
1

Loc(k
0
)+c k

1

… … … …

i k
i

Loc(k
0
)+i*c k

i

… …

n-1 k
n-1

Loc(k
0
)+(n-1)*c k

n-1

The formula to calculate the elements of location is shown as below:

21

目录页

Zhang Ming ”Data Structures and Algorithms “

class arrList : public List<T> { // sequential list，vector

private: // value types and value space of linear list

T * aList ; // private variables，instance of storage for sequential list

int maxSize; // private variables ，maximum length of the sequential list

int curLen; // private variables ，current length of the sequential list

int position; // private variables ，current operation location

public:

arrList(const int size) { // construct a new list，set its length to the maximum

maxSize = size; aList = new T[maxSize];

curLen = position = 0;

}

~arrList() { // destructor function used to eliminate the instance

delete [] aList;

}

Sequence List’s Class Definition

Linear ListLinear List

Chapter II

22

目录页

Zhang Ming” Data Structures and Algorithms “

Chapter II

Linear List

Sequence List’s Class Definition

void clear() { // delete the content，becoming an empty list

delete [] aList; curLen = position = 0;

aList = new T[maxSize];

}

int length(); // returns the current length

bool append(const T value); // append element v at end

bool insert(const int p, const T value); // insert an element at P

bool delete(const int p); // delete the element at P

bool setValue(const int p, const T value); // set the value of an element

bool getValue(const int p, T& value); // return the value of an element

bool getPos(int &p, const T value); // seek for an element

};

2.2 Sequential List

23

目录页

Zhang Ming ”Data Structures and Algorithms “

Operations in Sequential List

• Key discussions

– Insert element operation

•bool insert(const int p, const T value);

– Delete element operation

•bool delete(const int p);

• Others (Think by yourselves)

2.2 Sequential ListLinear List

Chapter II

24

目录页

Zhang Ming” Data Structures and Algorithms “

Chapter II

Linear List

Diagram for the insertion of sequential list

2.2 Sequential List

curr

k
0

k
1

k
2

k
0

k
1

k
2

curr

k
4

k
3

k
5

X
X

k
4

k
3

… …

k
5

25

目录页

Zhang Ming ”Data Structures and Algorithms “

Insertion of sequential list
// set the element type as T， aList is the array to store Sequential list，
// maxSize is its maximum length；
// p is the insert location of the new element ，return true if succeeds，
// otherwise return false

template <class T> bool arrList<T> :: insert (const int p, const T value) {

int i;

if (curLen >= maxSize) { // check if the SL is overflow

cout << "The list is overflow"<< endl; return false;

}

if (p < 0 || p > curLen) { // check if the position to insert is valid

cout << "Insertion point is illegal"<< endl; return false;

}

for (i = curLen; i > p; i--)

aList[i] = aList[i-1]; // move right from the end curLen -1 of the

list until p

aList[p] = value; // insert a new element at p

curLen++; // adds the current length of the list by 1

return true;

}

2.2 Sequential ListLinear List

Chapter II

26

目录页

Zhang Ming ”Data Structures and Algorithms “

Diagram for sequential list’s delete operation

• 2.2 Sequential List

2.2 Sequential ListLinear List

Chapter II

curr

k
0

k
1

k
2

k
0

k
1

k
2

curr

k
4

k
3

k
5

k
4

k
3

k
5

k
6

k
6

… …

27

目录页

Zhang Ming ”Data Structures and Algorithms “

Delete operation in sequential list
// set the type of the element as T；aLis is the array to store sequential list

// and p is the position of elements to delete

// returns true when delete succeed，otherwise returns false

template <class T> // the type of the elements of SL is T

bool arrList<T> :: delete(const int p) {

int i;

if (curLen <= 0) { // Check if the SL is empty

cout << " No element to delete \n"<< endl;

return false ;

}

if (p < 0 || p > curLen-1) { // Check if the position is valid

cout << "deletion is illegal\n"<< endl;

return false ;

}

for (i = p; i < curLen-1; i++)

aList[i] = aList[i+1]; // [p, currLen) every element move left

curLen--; // the current length of the list decreases by 1

return true;

}

2.2 Sequential ListLinear List

Chapter II

28

目录页

张铭《数据结构与算法》

Algorithm analysis of insert and

delete operations in sequential list

• The movement of elements in the list

– Insert: move 𝑛 − 𝑖

– Delete: move 𝑛 − 𝑖 − 1

• The probability values to insert or delete in

position i are respectively 𝑝𝑖 𝑎𝑛𝑑 𝑝𝑖′

– The average move time for insert operation is

𝑀𝑖 = 𝑖=0
𝑛 𝑛 − 𝑖 𝑝𝑖

– The average move time of delete operation is

𝑀𝑑 = 𝑖=0
𝑛−1 𝑛 − 𝑖 − 1 𝑝𝑖′

2.2 Sequential ListLinear List

Chapter II

29

目录页

张铭《数据结构与算法》

Algorithm Analysis

• If the probability to insert or delete in every location in

SL is the same, namely 𝑝𝑖 =
1

𝑛+1
, 𝑝𝑖

′ =
1

𝑛

2.2 Sequential ListLinear List

Chapter II

2)1(2

)1(

1

)1(

)(
1

1
)(

1

1

0 00

n

n

nn

n

nn

in
n

in
n

M
n

i

n

i

n

i

i

2

1
1

2

)1(

)(
1

)1(
1

2

0 00

nn

n

n

nin
n

in
n

M
n

i

n

i

n

i

d

Time cost

is O(𝑛)

30

目录页

Zhang Ming ”Data Structures and Algorithms “

Thinking

• What should you think about when

doing insert or delete operations in

sequential list？

• What advantages and disadvantages

does sequential list have?

2.2 Sequential ListLinear List

Chapter II

31

目录页

张铭《数据结构与算法》

Chapter II Linear List

• 2.1 Linear List

• 2.2 Sequential List

• 2.3 Linked List

• 2.4 Comparison between

sequential list and linked list

2.3 Linked ListLinear List

Chapter II

a
0

a
1

a
n-1

head

tail

32

目录页

张铭《数据结构与算法》

Linked List

• Link its storage nodes through pointers

.

• Storage nodes are consisted of two

parts

– Data field + pointer field（successor

address）

2.3 Linked ListLinear List

Chapter II

data next

33

目录页

张铭《数据结构与算法》

2.3 Linked List

• Classification（according to linked

ways and the number of points）

– Single linked list

– Double linked list

– Circular linked list

2.3 Linked ListLinear List

Chapter II

a
0

a
1

a
n-1

head

tail

a
0

a
n-1

tail

head

head

tail

a
0

a
1

a
n-1

34

目录页

张铭《数据结构与算法》

Single linked list

• Simple single linked list

– The whole single linked list： head

– The first node： head

– The judge of empty list：

head == NULL

– The current node a
1
：curr

2.3 Linked ListLinear List

Chapter II

a
0

a
1

a
n-1

head

tail
curr

35

目录页

张铭《数据结构与算法》

Single linked list

• Single linked list with head node

– The whole single linked list ： head

– The first node ： head->next，head ≠ NULL

– The judge of empty list：
• head->next == NULL

– The current node a
1
：fence->next (curr

implied)

2.3 Linked ListLinear List

Chapter II

a
0

a
1

a
n-1

head

tailfence curr

36

目录页

张铭《数据结构与算法》

Node type of the single

linked list
template <class T> class Link {

public:

T data; // to protect content of the node elements

Link<T> * next; // the pointer which points to successor point

Link(const T info, const Link<T>* nextValue =NULL) {

data = info;

next = nextValue;

}

Link(const Link<T>* nextValue) {

next = nextValue;

}

};

2.3 Linked ListLinear List

Chapter II

37

目录页

张铭《数据结构与算法》

Class definition of single list

template <class T> class lnkList : public List<T> {

private:

Link<T> * head, *tail; // head and tail pointer of the single list

Link<T> *setPos(const int p); // the pointer of the pth element

public:

lnkList(int s); // constructed function

~lnkList(); // destructor

bool isEmpty(); // judge whether the link is empty

void clear(); // clear the link’s storage and it becomes an empty list

int length(); // returns the current length of the sequential list

bool append(cosnt T value); // add an element value at the end，
// the length of the list added by 1

bool insert(cosnt int p, cosnt T value); // insert an element at p

bool delete(cosnt int p); // delete the element at p，
// the length of the list decreased by 1

bool getValue(cosnt int p, T& value); // get the value of the element at p

bool getPos(int &p, const T value); // seek for element with value T

}

2.3 Linked ListLinear List

Chapter II

38

目录页

张铭《数据结构与算法》

Seek the ith node in the single linked list

// the return value of the function is the found node pointer

template <class T> // the element type of the linked list is P

Link<T> * lnkList <T>:: setPos(int i) {

int count = 0;

if (i == -1) // if i was -1, then locate it to the head

return head;

// circular location, if I was 0 then locate to the first node

Link<T> *p = head->next;

while (p != NULL && count < i) {

p = p-> next;

count++;

};

// points to the ith node，i＝0,1,…，when the number of

// the nodes of the list is less than i then return NULL

return p;

}

2.3 Linked ListLinear List

Chapter II

39

目录页

Zhang Ming ”Data Structures and Algorithms “

Insert operation of single linked list

• Create a new node

• New node points to the right node

• The left node points to new node

2.3 Linked ListLinear List

Chapter II

Insert 10 between 23 and 12

20 23 15head

tail

12

20 23 15head

tail

1210

40

目录页

张铭《数据结构与算法》

Insert algorithm of single linked list
// insert a new node as the ith node

template <class T>

// element type of the linked list is T

bool lnkList<T> :: insert(const int i, const T value) {

Link<T> *p, *q;

if ((p = setPos(i -1)) == NULL) { // p is the previous node of the ith node

cout << " illegal insert position"<< endl;

return false;

}

q = new Link<T>(value, p->next);

p->next = q;

if (p == tail) // insert position is at the tail and

// the node inserted becomes the new tail

tail = q;

return true;

}

2.3 Linked ListLinear List

Chapter II

41

目录页

张铭《数据结构与算法》

Delete operation of single linked list

• Delete the node x from linked list

– 1. Assign p to point to the previous node of

element x

– 2. delete the node with element x

– 3. release the space that x occupied

2.3 Linked ListLinear List

Chapter II

42

目录页

张铭《数据结构与算法》

Example of delete operation of single linked list

• 2.3 Linked List

Linear ListLinear List

Chapter II

head

tail

x

p

p = head;

while (p->next!=NULL && p->next->info!= x)

p = p->next;

43

目录页

张铭《数据结构与算法》

Delete the node with value X

• 2.3 Linked List

Linear ListChapter II

xhead

tail

qp

q = p->next;

p->next = q->next;

free(q);

44

目录页

张铭《数据结构与算法》

Delete algorithm of single linked list
template <class T> // Element type of the linked list is T

bool lnkList<T>:: delete((const int i) {

Link<T> *p, *q;

// node to delete doesn’t exist, when the given i is bigger than

// the number of the current elements in the list

if ((p = setPos(i-1)) == NULL || p == tail) {

cout << " illegal delete position " << endl;

return false;

}

q = p->next; // q is the real node to delete

if (q == tail) { // if the node to delte is the tail,

// then change the tail pointer

tail = p; p->next = NULL:

}

else //delete node q and change linked pointer

p->next = q->next;

delete q;

return true;

}

2.3 Linked ListLinear List

Chapter II

45

目录页

张铭《数据结构与算法》

Operation analysis of single linked list

• 对一个结点操作，必先找到它，即用一个指针指
向它

• 找单链表中任一结点，都必须从第一个点开始

• 单链表的时间复杂度 𝑂 𝑛

– 定位： ：𝑂 𝑛

– 插入： 𝑂 𝑛 + 𝑂 1

– 删除：𝑂 𝑛 + 𝑂(1)

2.3 Linked ListLinear List

Chapter II

p = head;

while (not reaching) p = p->next;

To operate on a node you must find it first, which means to get a pointer address

To find any node in single linked list you must begin from the first node

The time complexity

locating：

insert

delete

46

目录页

张铭《数据结构与算法》

Double linked list

• To make up the disadvantages of single linked

list, double linked list appears.

• The next field of single linked list only points to

the previous node , it can not be used to find

the successive node. The same for “single prev”.

• So, we add a pointer that points to the

precursor node of it in the double linked list.

2.3 Linked ListLinear List

Chapter II

a
0

a
n-1

tail

head

47

目录页

张铭《数据结构与算法》

Double linked list and type of its node

template <class T> class Link {

public:

T data; // used to store content of node elements

Link<T> * next; // the pointer points to successor node

Link<T> *prev; // the pointer points to precursor node

Link(const T info, Link<T>* preValue = NULL, Link<T>* nextValue =

NULL) {

// constructor with given value and precursor and successor pointers

data = info;

next = nextValue;

prev = preValue;

}

Link(Link<T>* preValue = NULL, Link<T>* nextValue = NULL) {

// constructor with given value and precursor and successor pointers

next = nextValue;

prev = preValue;

}

}

2.3 Linked ListLinear List

Chapter II

48

目录页

Zhang Ming ”Data Structures and Algorithms “

Insert procedure of double linked list (Be careful with the order)

p

q

q->next=p->next

q->prev=p

p->next=q

q->next->prev=q

new q;
①

④
②

③

Insert a new node after the node pointed by p

2.3 Linked ListLinear List

Chapter II

49

目录页

Zhang Ming ”Data Structures and Algorithms “

Delete procedure

• If you delete p

immediately

– Do not need to

assign the null

value

2.3 Linked ListLinear List

Chapter II

Delete the node pointed by p

p

p->prev->next=p->next

p->next->prev=p->prev

p->next=NULL

p->prev=NULL

①

②

50

目录页

张铭《数据结构与算法》

Circularly linked list

• Link the head and tail of single linked list and

double linked list, and we created circular lists

• Do not increase other cost, but benefit lots of

operations

– From any node of circular list you can access all

the other nodes

2.3 Linked ListLinear List

Chapter II

head

tail

a
0

a
1

a
n-1

51

目录页

张铭《数据结构与算法》

Boundary conditions of

linked list• Treatment of some special points

– Treatment with the head node

– Pointer field of the tail node of a non-circular list

should be kept as NULL

– Tail of a circular list points to its head pointer

• Treatment with linked list

– Special treatment with empty linked list

– When insert or delete nodes, be careful with the

linking process of the related pointers

– The correctness of points moving

• insert

• search or iteration

2.3 Linked ListLinear List

Chapter II

52

目录页

张铭《数据结构与算法》

Thinking

• Think about the single linked list

with head or not.

• The problems you should consider

when deal with linked list.

2.3 Linked ListLinear List

Chapter II

53

目录页

张铭《数据结构与算法》

Chapter II Linear List

• 2.1 Linear List

• 2.2 Sequential List

• 2.3 Linked list

• 2.4 Comparison between

sequential list and linked list

Linear List

Chapter II

54

目录页

张铭《数据结构与算法》

2.4 Comparison of the implementation method of linear list

• Main advantages of sequential lists

– No pointers, and no overhead cost

– Read an element in a sequential list is quite easy and

convenient

• Main advantages of linked list

– No need to know the list length list before construction

– The length of the linked list can be dynamically changed

– Support frequent insert and delete operations

• To sum up

– Sequential list is the best choice for storing static data

– Linked list is a good choice for storing dynamic data

2.4 Comparison of linear list’s achieving waysLinear List

Chapter II

55

目录页

张铭《数据结构与算法》

Comparison between sequential list and linked list

• Sequential list

– Time cost of insert and delete operation is O(n)，search of

ith element can be done in constant time.

– You must apply for continuous storage space with fixed

length previously

– If the whole array is full there will be no structural storage

cost

• Linked list

– Time cost of insert and delete operation is O(1)，but the

cost for finding the ith element is O(n)

– Uses pointers for storage, you need to assign storage space

dynamically to the new elements per demand

– Every element has overhead storage cost

2.4 Comparison of linear list’s achieving waysLinear List

Chapter II

56

目录页

张铭《数据结构与算法》

Storage density of Sequential list and linked list

n means the current number of elements in linear list

P means the size of the storage space of the pointer（
usually 4 bytes）

E means the size of the storage space of the data element

D means the maximum number of linked list elements that

can be stored in array

• Space requirement

– Space requirement of sequential list is DE

– Space requirement of linked list is n(P + E)

• The critical value of n，namely n > DE / (P+E)

– The bigger the n, the higher the space efficiency of

sequential list

– If P = E，then the critical value is n = D / 2

2.4 Comparison of linear list’s achieving waysLinear List

Chapter II

57

目录页

张铭《数据结构与算法》

The choice in different situations

• Situations sequential list not fit

– Insert or delete operations are frequent

– The maximum length of the linear list is also a

vital consideration

• Situations linked list not fit

– When read operation is more frequen than

insert or delete operations

– When the storage cost of the pointer is

relatively big compared to the occupied space

of the attributes of a node , think carefully.

2.4 Comparison of linear list’s achieving waysLinear List

Chapter II

58

目录页

张铭《数据结构与算法》

Choice between Sequential list and linked list

• Sequential list

– The number of nodes can be estimated

– The nodes are relatively stable

（insert and delete operation are not frequent ）

– n > DE / (P + E)

• Linked list

– The number of nodes cannot be estimated

– The node are dynamic

(insert and delete operation are frequent ）

– n < DE / (P + E)

2.4 Comparison of linear list’s achieving waysLinear List

Chapter II

59

目录页

张铭《数据结构与算法》

Thinking

• Choose between sequential list

and linked list.

– Dynamic change of nodes

– Storage density

Linear ListChapter II

Chapter II

60

目录页

张铭《数据结构与算法》

Thinking： expression of polynomial with one variable

• Polynomial with one variable: P
n
(x) = p

0
+p

1
x+p

2
x

2
+…+p

n
x

n

• Linear list expression：P = (p
0
, p

1
, p

2
, …, p

n
)

• Sequential list expression：only save the coefficient（the ith element save X’s

coefficient）

the situation when the data is sparse: p(x) = 1+2x
10000

+4x
40000

• Linked list expression： node structure

2.4 Comparison of linear list’s achieving waysLinear List

Chapter II

coef. index

0 -1 1 0 2 10000 4 40000

p0 p1 p2 … … pn

Ming Zhang“ Data Structures and Algorithms “

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)

http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

