
More Syntax, Keywords, Functions, Variable
Scope

Here are some clarifications on some core concepts from this week:

1. What do the +=, -=, *=, and /= symbols mean?

These are short-hand notation for a common operation in programming

x += n <-- stands for --> x = x + n

x -= n <-- stands for --> x = x – n

x *= n <-- stands for --> x = x * n

x /= n <-- stands for --> x = x / n

 Most commonly, this is used to increment or decrement a variable, like so:

 a += 1 <-- increment variable a

 b -= 1 <-- decrement variable b

2. What is the % operator?

This is the modulo operator. It is used to get the remainder from a division. Here is an example:

5 % 3 = 2 When 5 is divided by 3 (5/3), 3 goes into 5 one time and the remainder is 2.

6 % 3 = 0 When 6 is divided by 3 (6/3), 3 goes into 6 two times and the remainder is 0.

3. What does it mean to say for x in my_string?

In Python, there is an easy and intuitive way to iterate over all the characters in a string.

We use a for loop.

my_string = ‘hello world’
for x in my_string:

 print x

The for loop has a variable called x whose value changes each time through the loop. Initially,

x is h, then x is e, and so on (don’t forget that the space is a character too!), until the last value

that x will take on, which is d.

4. What does break do in a program?

The break statement in a loop causes the loop to terminate before it has finished running. The

break statement causes the program to exit the innermost loop in which it is enclosed.

5. Variable scope (what parts of my code know about what variables)

Consider the following code:

1 def f(x):

2 b = x + c

3 return b

4 c = 0

5 print f(1) <----- outputs 1

6 print c <----- outputs 0

This code runs with no errors. Line 4 sets a variable c to 0. Line 5 calls the function f(x) with

1 substituted for x. Inside f(x), create a variable called b to be x+c, which is 1+0. Here is the

interesting thing. f(x) does not have its own variable called c, so it looks outside of itself to

see if the program has a variable called c, which it finds and uses.

Now consider the modified code:

1 def f(x):

2 b = x + c <----- ERROR

3 c += 1

4 return b

5 c = 0

6 print f(1)

7 print c

This code has an error!
UnboundLocalError: local variable 'c' referenced before

assignment

Again, line 5 sets a variable c to 0. Line 6 calls the function f(x) with 1 substituted for x.

Inside f(x), create a variable called b to be x+c. Here lies the problem. Python sees that in

line 3, we are assigning a variable called c to some value. Therefore, it assumes that c is a

variable that exists only in this function. It does not look outside the function for a variable

called c there! Therefore, since the variable c is never given some initial value, line 2 results in

an error – the function f(x) does not know what the value of c is.

So it seems that you can access variables defined outside of a function as long as they are in a

read-only way!

