11. Compilers

6.004x Computation Structures
Part 2 — Computer Architecture

Copyright © 2015 MIT EECS

6.004 Computation Structures L11: Compilers, Slide #1

Programming Languages

32-bit (4-byte) ADD instruction:

100000

00100

00010

00011

000000000O00O0

opcode

Means, to BETA,

rc

We’d rather write

ADD(R2, R3, R4)

or better yet

a=>b+ c;

Reg[4]

ra

rb

(Assembly)

(unused)

< Reg[2] + Reg[3]

(High-Level Language)

High-Level Languages

Most algorithms are naturally
expressed at a high level. Consider
the following algorithm:

/* Compute greatest common divisor
* using Euclid’s method
*/
int ged(int a, int b) {
int x = a;

int y = b;
while (x !=vy) {
if (x > y) {
X =X -Y;
} else {
y =Yy - X;
}
}
return Xx;

* 6.004 uses C, a common systems
programming language. Modern
popular alternatives include C++,
Java, Python, and many others

« Advantages over assembly
— Productivity (concise, readable,
maintainable)
— Correctness (type checking, etc)

— Portability (run same program
on different hardware)

 Disadvantages over assembly?
— Efficiency?

Implementations: Interpretation vs compilation

Interpretation

Prgggjm M 2

\ 4

’MI

Layers of interpretation:

e Often we use several layers
of interpretation to achieve
desired behavior, e.g.:

* x86 CPU, running

e Python, running

* SciPy application, performing
* Numerical analysys

Model of Interpretation:

e Start with some hard-to-program

machine, say M,

» Write a single program for M, that
mimics the behavior of some easier

machine, M,

e Result: a “virtual” M,

Application

()0
(00)
(()I0]

>

P

ython

=

x86

Structure

SciPy

\ 4

Python Interp

Hardware

Language

Applic Lang
Python

x86 Instrs

Compilation

Model of Compilation:

P2
* Given some hard-to-program —

Y

1,
=

machine, say M,;...
* Find some easier-to-program @
language L, (perhaps for a more

complicated machine, M,); write

M,

programs in that language

* Build a translator (compiler) that translates programs from M,’s
language to M,’s language. May run on M,, M,, or some other

machine.

Interpretation and compilation: two ways to execute high-

level languages
* Both allow changes in the source program
e Both afford programming applications in platform (e.g.,
processor) independent languages
* Both are widely used in modern computer systems!

Interpretation vs Compilation

Characteristic differences:

Interpretation Compilation
How it treats input “x+2” Computes x+2 Generates a program that
computes x+2
When it happens During execution Before execution
What it complicates/slows Program execution Program development
Decisions made at Run time Compile time

 Major choice we’ll see repeatedly: do it at compile
time or at run time?

— Which is faster?
— Which is more general?

Compilers

 Bare minimum for a functional compiler:

. Functionally
Correct input equivalent
source program target program

(e.g., C) (e.g., ASM)

* Good compilers:

— Produce meaningful errors on incorrect programs
 Even better: meaningful warnings

— Produce fast, optimized code

* This lecture:
— Simple techniques to compile a C programs into assembly
— Overview of how modern compilers work

A Simple Compilation Strategy

Programs are sequences of statements, so
repeatedly call compile_statement(statement):

— Unconditional: expr;

— Compound: { statement,; statement,; ... }

— Conditional: if (expr) statement,; else statement,;
— Iteration: while (expr) statement;

Also need compile_expr(expr) to generate code to
compute value of expr into a register

— Constants: 1234

— Variables: a, b[expr]

— Assignment: a = expr We'll cover this in
— Operations: expr, + expr,, ... the next lecture..

— Procedure calls: proc(expr,...)

compile_expr(expr) = Rx

* Constants: 1234 = Rx +Variables: b[expr] = Rx
— CMOVE(1234,Rx) — compile expr(expr)=Rx

— LD(c1,Rx) Jem MULC(Rx,bsize,Rx)

—

—~— LD(Rx,b,Rx)

4*expr

cl: LONG(123456)

// reserve array space
Wi b: . = . + bsize*blen

 Variables: a = Rx

~ LD(a,Rx) Operations:

a: LONG(O) expr; + expr, = Rx
— compile_expr(expr;)=Rx
compile_expr(expr,)=Ry

* Assignment: a=expr = Rx
ADD (Rx,Ry,Rx)

— compile expr(expr)=Rx
ST(Rx,a)

Compiling Expressions

C code: .
compile expr(y = (x-3)*(y+123456))
int X, y; compile expr((x-3)*(y+123456))
y = (x-3)*(y+123456) compEle expr(x-3)
compile_expr(x)
Beta assembly code: LD(x,rl)
LONG(O) compile_expr(B)
. LONG(®) CMOVE(3,r2)
: LONG(123456) SUB(ri1,r2,rl)
compile expr(y+123456)
LD(x, ri) compi%e_exr)Jr*(y)
CMOVE (3, r2) LD(y, r2
SUB(rl, r2, ri) =SUBC(r1,3,rl) compile expr(123456)
LD(v, r2) LD(c1,r3)
LD(c1, r3) ADD(r2,r3,r2)
ADD(r2, r3, r2) MUL(r1,r2,rl)
MUL(r2, ri, ril) ST(rl,y)

ST(rl, V)

compile_statement

 Unconditional: expr;

Beta assembly:
compile_expr(expr)

 Compound: { statement,; statement,;

Beta assembly:
compile_statement(statement,)
compile_statement(statement,)

compile_statement: Conditional

C code:
if (expr)
statement;

C code:

if (expr)
statement;

else
statement,;

Beta assembly:
compile_expr(expr)=Rx
BF(rx, Lendif)
compile_statement(statement)

Lendif:

Beta assembly:
compile_expr(expr)=Rx
BF(rx, Lelse)
compile_statement(statement)
BR(Lendif)

Lelse:

compile_statement(statement,)
Lendif:

compile_statement: Iteration

C code:

while (expr)
statement;

C code:

Beta assembly:

Lwhile:
compile_expr(expr)=Rx
BF(rx, Lendwhile)
compile_statement(statement)
BR(Lwhile)

Lendwhile:

Better Beta assembly:
BR(Ltest)

Lwhile:
compile_statement(statement)

Ltest:
compile_expr(expr)=Rx
BT(rx, Lwhile)

— Saves an

instruction
each iteration

is equivalent to:

for (init; test; increment)
statement;

Example:

for (i=0; 1 < 10; i =1 + 1)

sum =

sum + b[i];

init;
while (test) {

statement;
increment;

Putting It All Together: Factorial

= 20; {

=@;

(n > 0) {{

= P*n, {

= n-1; {
<

n: LONG(20)

r: LONG(O)

start:
CMOVE (1, ro)
ST(ro, r)
BR(test)

loop:
LD(r, r3)
LD(n,rl)
MUL(rl, r3, r3)
ST(r3, r)
LD(n,rl)
SUBC(rl1, 1, rl)
ST(rl, n)

test:
LD(n, rl1)
CMPLT(r31, ri1, r2)
BT(r2, loop)

done:

Easy translation

Slow code
(10 instructions
in the loop)

Optimization: keep values in regs

int n = 20,
int r;

r=1;

while (n > Q)
{

r = r¥*n;

>
I

n-1;

n: LONG(20)
r: LONG(®)
start:
CMOVE(1, ro)
ST(ro, r)
LD(n,rl) | keep n in ri
LD(r,r3) | keep r in r3
BR(test)
loop: Optimization:
MUL(rl, r3, r3) Keep n, r in registers
SUBC(r1, 1, ril) = move LDs/STs
test: out of loop!
CMPLT(r31, rl, r2)
BT(r2, loop) 4 instructions in the loop
done:
ST(ri,n) | save final n

ST(r3,r) | save final r

Anatomy of a Modern Compiler

Source Intermediate Code for
code representation target ISA
+ Read source program * Optimize IR

e Translate IR to ASM

 Break it up into basic O
* Optimize ASM

elements

 Check correctness,
report errors

 Translate to generic
intermediate
representation (IR)

Frontend Stages

* Lexical analysis (scanning): Source -2 List of tokens

int x = 3;
inty = X + 7;
while (x !=vy) {

}

}
}

if (x > y) {
X =X-Y;

else {
y =Yy - X;

(“int”, KEYWORD)
(“x”, IDENTIFIER)
(“=”, OPERATOR)

(“3”, INT_CONSTANT)
(;”, SPECIAL_SYMBOL)
(“int”, KEYWORD)
(“y”, IDENTIFIER)
(“=”, OPERATOR)

(“x”, IDENTIFIER)
(“+”, OPERATOR)

(“7”, INT_CONSTANT)
(;”, SPECIAL_SYMBOL)
(“while”, KEYWORD)
(“(”, SPECIAL_SYMBOL)

Frontend Stages

* Lexical analysis (scanning): Source = Tokens
* Syntactic analysis (parsing): Tokens = Syntax tree

Compound statement

var const
7

6.004 Computation Structures L11: Compilers, Slide #18

Frontend Stages

* Lexical analysis (scanning): Source - Tokens
» Syntactic analysis (parsing): Tokens = Syntax tree

* Semantic analysis (mainly, type checking)

Consider:

int x = “bananas”;

Syntax OK
Semantically (meaning)
WRONG

X int

Line 1: error, invalid conversion from string constant to int

Intermediate Representation (IR)

* Internal compiler language that is:
— Language-independent
— Machine-independent
— Easy to optimize

 Why yet another language?

— Assembly does not have enough
info to optimize it well

— Enables modularity IR
and reuse IR

Common IR: Control Flow Graph

Assignments: - F %
X =aopb

Variable /-, \ !

Variable or constant

Basic block: Sequence of assignments with an
optional branch at the end

Control flow graph:
— Nodes: Basic blocks
— Edges: branches between basic blocks

Control Flow Graph for GCD

int x = 3;
inty = x + 7;
while (x !=vy) {
if (x >y) {
X=X =Y,
} else {
y =Yy - X;
}
}

Looks like a high-level FSM...

6.004 Computation Structures L11: Compilers, Slide #22

IR Optimization

 Perform a set of passes over the CFG
— Each pass does a specific, simple task over the CFG

— By repeating multiple simple passes on the CFG over and
over, compilers achieve very complex optimizations

 Example optimizations:

— Dead code elimination: Eliminate assignments to variables
that are never used, or basic blocks that are never
reached

— Constant propagation: Identify variables that are constant,
substitute the constant elsewhere

— Constant folding: Compute and substitute constant
expressions

Example IR Optimizations

NOTE: Expressions with > 2 vars or constants
broken down in multiple assignments,
using temporary variables

6.004 Computation Structures L11: Compilers, Slide #24

Example IR Optimizations

|. Dead code elim
2. Constant propagation
3. Constant folding

6.004 Computation Structures L11: Compilers, Slide #25

Example IR Optimizations

Dead code elim
Constant propagation
Constant folding

oUW =

int z = 2*y; Dead code elim

if (x <y) { Constant propagation
z = X/2 +y/3; Constant folding

1 else { if 3<10) if (true)

- -
“0=l3 =3 -0 8

=1+ 2 [F_t2 3+ 10

6.004 Computation Structures L11: Compilers, Slide #26

Example IR Optimizations

Dead code elim
Constant propagation
Constant folding
Dead code elim

N A WD =

int z = 2%y;

if (x < y) { Constant propagation
z = x/2 + y/3; Constant folding

} else { Dead code elim
z = xX*y +y;

}

6.004 Computation Structures L11: Compilers, Slide #27

Example IR Optimizations

Dead code elim

l.
int x = 3; 2. Constant propagation
inty =x+ 7 3. Constant folding
int z = 2*y; 4. Dead code elim
if (x <y) { 5. Constant propagation
z = x/2 + y/3 6. Constant folding
} else { 7. Dead code elim
Z = xX*y + y; 8. Constant propagation
} 9. Constant folding
I

0. Dead code elim

6.004 Computation Structures L11: Compilers, Slide #28

Example IR Optimizations

Dead code elim

|
int x = 3; 2. Constant propagation
inty = x + 7; ! 3. Constant folding
int z = 2*y; 4. Dead code elim
if (x < y) { 5. Constant propagation
z = xX/2 + y/3; 6. Constant folding
} else { 7. Dead code elim
8.

Z = X*Yy + y; Constant propagation
} 9. Constant folding

Dumb repetition of 10. Dead code elim

simple transformations on CFGs 1. Constant propagation
|2. Constant folding
@ | 3. Dead code elim

Extremely powerful | 4. Constant propagation

optimizations |5. Constant folding
L _ No changes in 13,14, 15 -
More optimizations by adding passes: Common DONE

subexpression elimination, loop-invariant code motion,
loop unrolling...

Code Generation

Translate generated IR to assembly

Register allocation: Map variables to registers

— If variables > registers, map some to memory, and load/store
them when needed

Translate each assignment to instructions

— Some assignments may require > 1 instr if our ISA doesn’t
have op

Emit each basic block: label, assignments, and
branches

Lay out basic blocks, removing superfluous jumps

ISA and CPU-specific optimizations
— e.g., if possible, reorder instructions to improve performance

Putting It All Together: GCD

Source code Optimized IR
int x = 3;

inty =x + 7;
while (x !=vy) {

if (x > y) {
X =X=1Y;
} else {
y =Yy - X;
}

}

6.004 Computation Structures L11: Compilers, Slide #31

Putting It All Together: GCD

|.Allocate registers:

x: RO, y: R1

2. Produce each basic block:

BBLO: CMOVE(3, R®)
CMOVE (10, R1)
BR(BBL1)

BBL1: CMPLT(Rl, RO, R2)
BT(R2, BBL2)
BR(BBL3)

BBL2: SUB(R@, R1, R@)
BR(BBL4)

BBL3: SUB(Rl, RO, Rl)
BR(BBL4)

BBL4: CMPEQ(Rl, RO, R2)
BT(R2, end)
BR(BBL1)

end:

3. Lay out BBs, removing
superfluous branches:

BBLO:

BBL1:

BBL3:

BBL2:
BBL4:

end:

CMOVE (3, RO)
CMOVE (10, R1)
CMPLT(R1, R®, R2)
BT(R2, BBL2)
SUB(R1, R@, R1)
BR(BBL4)

SUB(R@, R1, RO)
CMPEQ(R1, R®, R2)
BF(R2, BBL1)

Summary: Modern Compilers

Source code

Tokens

Frontend (analysis)
Produces IR if correct program <

, Syntax tree
Produces meaningful errors

Type-checked syntax tree

—

IR

Backend (synthesis)
Produces optimized IR (optimized)
program

High-quality assembly
(often > hand-coded!)

