Week 6 – part 1 : Escape noise

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 6 - Noise models:

Escape noise

Wulfram Gerstner EPFL, Lausanne, Switzerland

6.1 Escape noise

- stochastic intensity and point process

6.2 Interspike interval distribution

- Time-dependend renewal process
- Firing probability in discrete time

6.3 Likelihood of a spike train

- likelihood function

6.4 Comparison of noise models

- escape noise vs. diffusive noise

6.5. Rate code vs. Temporal Code

- timing codes
- stochastic resonance

Week 6 – part 1 : Escape noise

6.1 Escape noise

stochastic intensity and point process

6.2 Interspike interval distribution

- Time-dependend ISI
- Firing probability in discrete time

6.3 Likelihood of a spike train

- likelihood function

6.4 Comparison of noise models

- escape noise vs. diffusive noise

6.5. Rate code vs. Temporal Code

- timing codes
- stochastic resonance

Neuronal Dynamics – Review: Sources of Variability

- Intrinsic noise (ion channels)

- -Finite number of channels
- -Finite temperature

Neuronal Dynamics – Review: Sources of Variability

- Intrinsic noise (ion channels)

- -Finite number of channels
- -Finite temperature

small contin

-Network noise (background activity)

- -Spike arrival from other neurons
- -Beyond control of experimentalist

Noise models?

escape process, stochastic intensity

escape rate

$$\rho(t) = f(u(t) - \vartheta)$$

Now:

Escape noise!

Noise models

noisy integration

$$\tau \cdot \frac{du_i}{dt} = -u_i + RI + \xi(t)$$

Relation between the two models: later this week (lecture 6.4)

Neuronal Dynamics – 6.1 Escape noise

escape process

escape rate
$$\rho(t) = \frac{1}{\Delta} \exp(\frac{u(t) - \vartheta}{\Delta})$$

escape rate

$$\rho(t) = f(u(t) - \vartheta)$$

Example: leaky integrate-and-fire model

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

if spike at
$$t^f \Rightarrow u(t^f + \delta) = u_r$$

Neuronal Dynamics – 6.1 stochastic intensity

escape process

escape rate

$$\rho(t) = f(u(t) - \vartheta)$$

Escape rate = stochastic intensity of point process

$$\rho(t) = f(u(t))$$

examples

$$\rho(t) = \frac{1}{\Delta} \exp(\frac{u(t) - \vartheta}{\Delta})$$

$$\rho(t) =$$

Neuronal Dynamics – 6.1 mean waiting time

$$\tau \cdot \frac{d}{dt}u = -(u - u_{rest}) + RI(t)$$

I(t)

escape rate $\rho(t) = f(u(t) - \vartheta)$ $\vartheta \qquad U$

mean waiting time, after switch

Neuronal Dynamics – 6.1 escape noise/stochastic intensity

Escape rate = stochastic intensity of point process

$$\rho(t) = f(u(t))$$

Neuronal Dynamics – Quiz 6.1.

Escape rate/stochastic intensity in neuron models [] The escape rate of a neuron model has units one over time [] The stochastic intensity of a point process has units one over time [] For large voltages, the escape rate of a neuron model always saturates at some finite value [] After a step in the membrane potential, the mean waiting time until a spike is fired is proportional to the escape rate [] After a step in the membrane potential, the mean waiting time until a spike is fired is equal to the inverse of the escape rate [] The stochastic intensity of a leaky integrate-and-fire model with reset only depends on the external input current but not on the time of the last reset [] The stochastic intensity of a leaky integrate-and-fire model with reset depends on the external input current AND on the time of the last reset