
Capitalization, Indentation, String Splicing

1. Capitalization is important in Python

There is a difference between True and true. Each programming language is different. In

Python, True and False are the values of the Boolean type.

Note, a Boolean type is one of the most primitive data types, with the logical values of True or

False.

Further, each programming language has a set of keywords, which are special words that are

used by the language itself. These are also case-sensitive. You cannot use these keywords as

variable names. Python 2.7 has 31 keywords. They are:

and

as

assert

break

class

continue

def

del

elif

else

except

exec

finally

for

from

global

if

import

in

is

lambda

not

or

pass

print

raise

return

try

while

with

yield

2. Indentation is important in Python

Notice that these notes are easy to read with indentation. Same goes for your code!

When you write Python code, make sure to indent where necessary. You indent the line after a

line that has a colon at the end (:). The following lines in your code stay indented to represent

what you want to execute inside that code block. Once you have finished writing your code

block with indentation, you decrease the indent to go back to the normal program flow.

if some_condition:

elif some_other_condition:

else:

for some_iteration:

while some_condition_holds:

INDENTED CODE BLOCK

INDENTED CODE BLOCK

INDENTED CODE BLOCK

INDENTED CODE BLOCK

INDENTED CODE BLOCK

3. Indexing a string

These can be a little confusing. I like to think of it like the following illustration.

H E L L O W O R L D

The square brackets define the slicing operations to do on the string. They numbers inside the

square brackets stand for, in this order:

text[beginning : end : step]

By default step is 1 (as in, we take do not skip any letters).

So we can ask the following types of questions:

a. What is the substring text[3:9] ? Now you can look at the arrows. Notice that we stop

once we hit the arrow pointing to 9, and do not take the letter after it. This is also equivalent

to text[3:-2] according to the position numbering. If we want to be explicit and also

include the step, this is equivalent to text[3:9:1].

The result would be the string LO WOR

b. What is text[3]? This is equivalent to getting text[3:4] or text[3:4:1].

You can look at where the arrow for 3 points and take the next letter – in this case, L.

c. What about when we want to take every other letter, or every third letter, or go backwards?

Now we can change the step. What is text[1:9:3]? Look at the arrows and take every

3rd letter between positions 1 to 8 (this is the substring ELLO WOR).

The result is the string EOO.

Similarly, to go backwards we can set the step to be negative. What is text[-2:1:-2]?

This means we start at position -2 and go through the string backwards until position 1,

taking every other letter.

The result is the string LO L (note the space between O and L).

Note. If we tried to take text[1:9:-2], this means start at position 1 and go to position

9 backwards by every 2nd letter. This gives an empty string ‘’ because there is no string

going from position 1 to 9 going backwards. To achieve what we were thinking of achieving,

we would have to write text[9:1:-2]. This gives the string LO L.

text

position

s

0 or

-11

1 or

-10

2 or

-9

3 or

-8

4 or

-7

5 or

-6

6 or

-5

7 or

-4

8 or

-3

9 or

-2

10 or

-1

err

