

Data Structures and Algorithms (10)

Instructor: Ming Zhang Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

10.3 Search in a Hash Table

Chapter 10. Search

- 10.1 Search in a linear list
- 10.2 Search in a set
- 10.3 Search in a hash table

2

• Summary

10.3 Search in a Hash Table

Search in a Hash Table

- 10.3.0 Basic problems in hash tables
- 10.3.1 Collisions resolution
- 10.3.2 Open hashing

Chapter 10

- 10.3.3 Closed hashing
- 10.3.4 Implementation of closed hashing
- 10.3.5 Efficiency analysis of hash methods

Chapter 10

Search

Open Hashing

 $\{77, 14, 75, 7, 110, 62, 95\}$ $\blacksquare h(Key) = Key \% 11$

- The empty cells in the table should be marked by special values
 - like -1 or INFINITY
 - Or make the contents of hash table to be pointers, and the contents of empty cells are null pointers

4

Performance Analysis of Chaining Method

- Give you a table of size *M* which contains *n* records. The hash function (in the best case) put records evenly into the M positions of the table which makes each chain contains n/M records on the average
 - When M>n, the average cost of hash method is Θ(1)

5

10.3.3 Closed Hashing

- $d_0 = h(K)$ is called the base address of K.
- When a collision occurs, use some method to generate a sequence of hash addresses for key K
 - $d_1, d_2, \dots d_i, \dots, d_{m-1}$
 - All the d_i (0<i<m) are the successive hash addresses
- With different way of probing, we get different ways to resolve collisions.
- Insertion and search function both assume that the probing sequence for each key has at least one empty cell
 - Otherwise it may get into a endless loop
- $\cdot\,$ We can also limit the length of probing sequence

Problem may Arise - Clustering

- Clustering
 - Nodes with different hash addresses compete for the same successive hash address
 - Small clustering may merge into large clustering
 - Which leads to a very long probing sequence

Chapter 10

Search

Several General Closed Hashing Methods

- 1. Linear probing
- 2. Quadratic probing
- 3. Pseudo-random probing
- 4. Double hashing

1. Linear probing

- Basic idea:
 - If the base address of a record is occupied, check the next address until an empty cell is found
 - Probe the following cells in turn: d+1, d+2,, M-1, 0, 1,, d-1
 - A simple function used for the linear probing: p(K,i) = I
- Advantages:

9

• All the cell of the table can be candidate cells for the new record inserted

Instance of Hash Table

- M = 15, h(key) = key%13
- In the ideal case, all the empty cells in the table should have a chance to accept the record to be inserted
 - The probability of the next record to be inserted at the 11th cell is 2/15
 - The probability to be inserted at the 7th cell is 11/15

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
26	25	41	15	68	44	6				36		38	12	51

Enhanced Linear Probing

- Every time skip constant c cells rather than 1
 - The ith cell of probing sequence is
 (h(K) + ic) mod M

Chapter 10

Search

- Records with adjacent base address would not get the same probing sequence
- Probing function is $p(K,i) = i^*c$

11

• Constant c and M must be co-prime

Example: Enhance Linear Probing

- For instance, c = 2, The keys to be inserted, k_1 and k_2 . $h(k_1) = 3$, $h(k_2) = 5$
- Probing sequences
 - The probing sequence of k_1 : 3, 5, 7, 9, ...
 - The probing sequence of k_2 : 5, 7, 9, ...
- The probing sequences of k_1 and k_2 are still intertwine with each other, which leads to clustering.

2. Quadratic probing

- Probing increment sequence: 1², -1², 2², -2², ..., The address formula is d_{2i-1} = (d +i²) % M
 - $d_{2i} = (d i^2) \% M$
- A function for simple linear probing :

p(K, 2i-1) = i*ip(K, 2i) = -i*i

13

Example: Quadratic Probing

- Example: use a table of size M = 13
 - Assume for k_1 and k_2 , $h(k_1)=3$, $h(k_2)=2$
- Probing sequences

Chapter 10

- The probing sequence of k_1 : 3, 4, 2, 7, ...
- The probing sequence of k₂: 2, 3, 1, 6, ...
- Although k₂ would take the base address of k₁ as the second address to probe, but their probing sequence will separate from each other just after then

3. Pseudo-Random Probing

• Probing function p(K,i) = perm[i - 1]

Chapter 10

Search

- here perm is an array of length M 1
- It contains a random permutation of numbers between 1 and M

// generate a pseudo-random permutation of n numbers
void permute(int *array, int n) {
 for (int i = 1; i <= n; i ++)
 swap(array[i-1], array[Random(i)]);</pre>

- Example: consider a table of size M = 13, perm[0] = 2, perm[1] = 3, perm[2] = 7.
 - Assume 2 keys k_1 and k_2 , $h(k_1)=4$, $h(k_2)=2$
- Probing sequences

Chapter 10

- The probing sequence of k₁: 4, 6, 7, 11, ...
- The probing sequence of k₂: 2, 4, 5, 9, ...
- Although k₂ would take the base address of k₁ as the second address to probe, but their probing sequence will separate from each other just after then

Secondary Clustering

- Eliminate the primary clustering
 - Probing sequences of keys with different base address overlap
 - Pseudo-random probing and quadratic probing can eliminate it

• Secondary clustering

Chapter 10

- The clustering is caused by two keys which are hashed to one base address, and have the same probing sequence
- Because the probing sequence is merely a function that depends on the base address but not the original key.
- Example: pseudo-random probing and quadratic probing

4. Double Probing

- Avoid secondary clustering
 - The probing sequence is a function that depends on the original key
 - Not only depends on the base address
- Double probing
 - Use the second hash function as a constant
 - $p(K, i) = i * h_2 (key)$
 - Probing sequence function
 - $d = h_1(key)$
 - $d_i = (d + i h_2 (key)) \% M$

18

Basic ideas of Double Probing

- The double probing uses two hash functions h_1 and h_2
- If collision occurs at address h₁(key) = d, then compute h₂(key), the probing sequence we get is :
 (d+h₂(key)) % M , (d+2h₂ (key)) % M , (d+3h₂ (key)) % M , ...
- It would be better if h_2 (key) and M are co-prime
 - Makes synonyms that cause collision distributed evenly in the table
 - Or it may cause circulation computation of addresses of synonyms
- Advantages: hard to produce "clustering"
- Disadvantages: more computation

Chapter 10

Method of choosing M and h2(k)

- Method1: choose a prime M, the return values of h_2 is in the range of
 - $1 \le h2(K) \le M 1$

Chapter 10

- Method2: set $M = 2^m$, let h_2 returns an odd number between 1 and 2^m
- Method3: If M is a prime, $h_1(K) = K \mod M$
 - $h_2(K) = K \mod(M-2) + 1$
 - or $h_2(K) = [K / M] \mod (M-2) + 1$
- Method4: If M is a arbitrary integer, h₁(K) = K mod p (p is the maximum prime smaller than M)
 - $h_2(K) = K \mod q + 1$ (q is the maximum prime smaller than p)

10.3 Search in a Hash Table

Thinking

 When inserting synonyms, how to organize synonyms chain?

Chapter 10

Search

 What kind of relationship do the function of double hashing h₂ (key) and h₁ (key) have? Ming Zhang "Data Structures and Algorithms"

Data Structures and Algorithms Thanks

the National Elaborate Course (Only available for IPs in China) http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/ Ming Zhang, Tengjiao Wang and Haiyan Zhao Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)