
Join the explorers, builders, and individuals who boldly offer

new solutions to old problems. For open source, innovation is

only possible because of the people behind it.

STUDENT WORKBOOK
EAP 7.0 JB083x

FUNDAMENTALS OF JAVA EE DEVELOPMENT
Edition 1

JB083x-EAP-7.0-en-1-20181001 Copyright ©2018 Red Hat, Inc.

FUNDAMENTALS

OF JAVA EE

DEVELOPMENT

JB083x-EAP-7.0-en-1-20181001 Copyright ©2018 Red Hat, Inc.

EAP 7.0 JB083x
Fundamentals of Java EE Development
Edition 1 20181001
Publication date 20181001

Authors: Ravishankar Srinivasan, Eduardo Ramirez, Zachary Gutterman,
Jim Rigsbee, Richard Allred

Editor: David O'Brien

Copyright © 2018 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are

Copyright © 2018 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but

not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of

Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,

Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details

contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed please e-mail

training@redhat.com or phone toll-free (USA) +1 (866) 626-2994 or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, Hibernate, Fedora, the Infinity Logo, and RHCE are

trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or

other countries.

The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks or trademarks/

service marks of the OpenStack Foundation, in the United States and other countries and are used with the

OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation,

or the OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: Connie Petlitzer, Rob Locke, Bowe Strickland, Scott McBrien, George Hacker, Forrest

Taylor

Document Conventions vii

Introduction ix
Fundamentals of Java EE Development . ix

Lab Setup Instructions for Exercises . x

1. Transitioning to Multi-tiered Applications 1
Describing Enterprise Applications . 2

Quiz: Describing Enterprise Applications . 5

Describing Multi-tiered Application Architecture . 9

Quiz: Multi-tiered Application Architecture . 14

Developing Applications Using Red Hat JBoss Developer Studio . 18

Guided Exercise: Developing Applications Using Red Hat JBoss Developer Studio 22

Summary . 29

2. Packaging and Deploying Applications to an Application Server 31
Describing an Application Server . 32

Quiz: Describing an Application Server . 35

Packaging and Deploying a Java EE Application . 39

Guided Exercise: Packaging and Deploying a Java EE Application . 43

Summary . 55

3. Creating Enterprise Java Beans 57
Converting a POJO to an EJB . 58

Guided Exercise: Creating a Stateless EJB . 66

Summary . 72

4. Managing Persistence 73
Describing the Persistence API . 74

Quiz: Describing the Persistence API . 82

Persisting Data . 84

Guided Exercise: Persisting Data . 91

Creating Queries . 99

Guided Exercise: Creating Queries . 106

Summary . 112

5. Managing Entity Relationships 113
Configuring Entity Relationships . 114

Guided Exercise: Configuring Entity Relationships . 123

Summary . 131

6. Creating REST Services 133
Describing Web Services Concepts . 134

Quiz: Web Services . 137

Creating REST Services with JAX-RS . 139

Guided Exercise: Exposing a REST Service . 147

Summary . 154

JB083x-EAP-7.0-en-1-20181001 v

vi JB083x-EAP-7.0-en-1-20181001

DOCUMENT CONVENTIONS

REFERENCES
"References" describe where to find external documentation relevant to a subject.

NOTE
"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

IMPORTANT
"Important" boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled "Important" will not cause data loss, but may cause

irritation and frustration.

WARNING
"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

JB083x-EAP-7.0-en-1-20181001 vii

viii JB083x-EAP-7.0-en-1-20181001

INTRODUCTION

FUNDAMENTALS OF JAVA EE DEVELOPMENT
Fundamentals of Java EE Development (JB083x) exposes experienced Java
Standard Edition (Java SE) developers to the world of Java Enterprise Edition
(Java EE). Students will learn about the various specifications that make up
Java EE. Through hands-on labs, students will learn how to develop multi-
tiered enterprise applications using various Java EE APIs.

COURSE
OBJECTIVES

• Describe the differences between Java SE and
Java EE application architectures.

• Create application components using the EJB,
JPA, JAX-RS, and CDI specifications.

• Develop back-end components necessary to
support a three-tiered web application using
JBoss Enterprise Application Platform (EAP)
and Apache Maven tooling.

• Deploy applications to Red Hat JBoss Enterprise
Application Platform.

AUDIENCE • Developers with Java SE experience.

PREREQUISITES • Proficient in developing Java SE applications.

• Proficient in using an IDE such as
Red Hat Developer Studio or Eclipse.

• Experience with Maven is recommended.

JB083x-EAP-7.0-en-1-20181001 ix

Introduction

LAB SETUP INSTRUCTIONS FOR
EXERCISES

Introduction
This course includes a number of guided exercises, which give you an opportunity to practice

the skills you are learning in the course presentations. To complete these exercises, you need to

configure a practice environment that you completely control.

These instructions assume that you are running a recent version of Apple macOS, Microsoft

Windows 7, 8, or 10, or a Linux distribution on your workstation. If you are using a Linux

distribution, we recommend that you use the latest stable Red Hat Enterprise Linux (RHEL), or

Fedora Workstation edition.

Hardware Requirements
The following minimum hardware is required to run the exercises in this course:

• 64-bit quad core CPU

• 4 GB RAM (minimum), 8 GB RAM (recommended)

• 80GB hard disk space

Installation Overview
You will use the following software components during this course:

• Git client

• JDK 1.8

• Apache Maven 3.3.9

• JBoss EAP 7.0.0

• Red Hat JBoss Developer Studio 11.0.0

• Firefox web browser 62.0 or later with the REST client add-on

The installation of the lab environment consists of the following tasks:

1. Install a Git client

2. Install JDK 1.8

3. Install and configure Apache Maven

4. Install Red Hat JBoss EAP

5. Install and configure Red Hat JBoss Developer Studio

6. Install and configure Firefox 62.0 or later with the REST client add-on

These instructions were tested on the following configurations:

• Apple macOS 10.12, Oracle JDK 1.8, Git 2.10

• Microsoft Windows 10 Pro, Oracle JDK 1.8, Git 2.18

x JB083x-EAP-7.0-en-1-20181001

Introduction

• Red Hat Enterprise Linux 7, OpenJDK 1.8, Git 1.8

• Fedora 28, OpenJDK 1.8, Git 2.17

For all the above listed operating systems, JBoss EAP 7.0.0, Apache Maven 3.3.9, Firefox 62.0, and

Red Hat JBoss Developer Studio 11.0 were used.

You can download a free copy of Red Hat Enterprise Linux, Red Hat JBoss EAP, and Red Hat JBoss

Developer Studio IDE for development purposes from the Red Hat Developer Program [https://

developer.redhat.com] portal.

INSTALLING A GIT CLIENT
Linux distributions usually include a Git client by default. If Git is not installed, install it using your

Linux distribution's package manager. For example, on Fedora systems, you can install Git using the

dnf command:

dnf install git

For macOS and Microsoft Windows, install the Git client from the Git website. Download the client

from https://git-scm.com/downloads.

INSTALLING A JDK
The first step in the lab environment set up process is to install a JDK for your operating system.

Install JDK 1.8 on Linux
For Linux distributions, OpenJDK is the best choice for a JDK 1.8 compatible Java development

environment.

If you are using Red Hat Enterprise Linux, run the following command as the root user to install

OpenJDK 1.8:

yum install java-1.8.0-openjdk-devel

If you are using Fedora Workstation, run the following command to install OpenJDK 1.8:

dnf install java-1.8.0-openjdk-devel

For Ubuntu and Debian-based systems, run the following command:

$ sudo apt install openjdk-8-jdk

For all other Linux distributions, consult your distribution's documentation or man pages and

install OpenJDK using your distribution's package manager. OpenJDK is packaged in almost all the

popular Linux distributions.

After you have installed the JDK, set the JAVA_HOME environment variable to point to the

path where the JDK is installed. Edit the $HOME/.bashrc file and add the full path to the JDK

installation. On RHEL and Fedora-based systems, OpenJDK is installed in the /usr/lib/jvm/
filename folder. Add the following to the $HOME/.bashrc file:

export JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-<version>"

Replace <version> with the version of OpenJDK that is installed on your system.

JB083x-EAP-7.0-en-1-20181001 xi

https://developer.redhat.com
https://developer.redhat.com
https://developer.redhat.com
https://git-scm.com/downloads

Introduction

For other Linux distributions, consult the documentation, or use the package manager tools to

identify where OpenJDK is installed, and set the JAVA_HOME environment variable appropriately.

Install JDK 1.8 on Microsoft Windows 7/10
Download Oracle JDK 1.8 64-bit installer for Windows from the Oracle website at:

https://www.oracle.com/technetwork/java/javase/downloads/index.html

The installer executable file will be in the format jdk-8u<version>-windows-x64.exe. Run

the downloaded installer to install the JDK. Ensure that the directory name where the JDK is

installed does not have spaces in it.

Add a new environment variable called JAVA_HOME, and set the value to the directory where you

installed the JDK. Append the JAVA_HOME/bin directory path to the PATH environment variable

to ensure that you can run the javac and java commands from the command line.

Install JDK 1.8 on Apple macOS
Download the Oracle JDK 1.8 64-bit installer for macOS from the Oracle website at:

https://www.oracle.com/technetwork/java/javase/downloads/index.html

The installer will be in the format jdk-8u<version>-macosx-x64.dmg. Run the installer and

install the JDK. Use the default values during the installation.

After you have installed the JDK, set the JAVA_HOME environment variable to point to the path

where the JDK is installed. Edit the $HOME/.bash_profile file and add the full path to the JDK

installation. On macOS, the JDK is installed in the /usr/libexec directory. Add the following to

the $HOME/.bash_profile file:

export JAVA_HOME="$(/usr/libexec/java_home -v 1.8)"

Append the JAVA_HOME/bin directory path to the PATH environment variable to ensure that you

can run the javac and java commands from the command line:

export PATH="$JAVA_HOME/bin:$PATH"

INSTALLING AND CONFIGURING APACHE MAVEN
You will use Apache Maven throughout this course to build, package, test, and deploy applications

on JBoss EAP. The installation process remains the same for all operating systems: download

the Apache Maven 3.3.9 binary distribution from https://repo.maven.apache.org/maven2/org/

apache/maven/apache-maven/3.3.9/, and extract to a directory of your choice. Make sure you do

not have spaces in the directory name.

After you have installed Maven, set the M2_HOME environment variable to point to the path where

Maven is installed.

Append the M2_HOME/bin directory path to the PATH environment variable to ensure that you can

run the mvn command from the command line.

To verify that Maven is installed correctly, run the mvn -v command. For example, on a Fedora 28

system, the following is the output:

$ mvn -v

Apache Maven 3.3.9...

Maven home: /home/user1/apps/apache-maven-3.3.9

xii JB083x-EAP-7.0-en-1-20181001

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://repo.maven.apache.org/maven2/org/apache/maven/apache-maven/3.3.9/
https://repo.maven.apache.org/maven2/org/apache/maven/apache-maven/3.3.9/

Introduction

Java version: 1.8.0_181, vendor: Oracle Corporation

Java home: /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.181-7.b13.fc28.x86_64/jre

Default locale: en_US, platform encoding: UTF-8

OS name: "linux", version: "4.17.19-200.fc28.x86_64"...

Configuring Maven Repositories
After Maven is installed, configure the repositories from where Maven should fetch dependencies

for building your applications.

Download the settings.xml file from https://raw.githubusercontent.com/RedHatTraining/

JB083x-lab/master/settings.xml.

This file contains the location of the repositories from where Maven should fetch dependencies.

Copy it to your local system as follows:

• For Microsoft Windows 7 and 10 systems, create a new directory called .m2 in your home

directory and copy the settings.xml file to this new directory. For example, if the user name

on your local Windows system is user1, the settings.xml file should be at C:\Users
\user1\.m2\settings.xml.

• For Linux-based systems, create a new directory called .m2 in your home directory and copy the

settings.xml to this new directory. For example, if the user name on your local Linux system

is user1, the settings.xml file should be at /home/user1/.m2/settings.xml.

• For macOS systems, create a new directory called .m2 in your home directory and copy the

settings.xml to this new directory. For example, if the user name on your local macOS system

is user1, the settings.xml file should be at /Users/user1/.m2/settings.xml.

INSTALLING RED HAT JBOSS EAP
Register for a free developer account at https://developers.redhat.com.

Download the EAP 7.0.0 installer JAR file from https://developers.redhat.com/download-

manager/file/jboss-eap-7.0.0-installer.jar.

To install JBoss EAP, follow the instructions from the JBoss EAP installation guide at:

https://access.redhat.com/documentation/en-us/

red_hat_ jboss_enterprise_application_platform/7.0/html-single/installation_guide/

#installer_installation

INSTALLING RED HAT JBOSS DEVELOPER STUDIO
Download the Red Hat Developer Studio 11.0.0 installer JAR file from https://

developers.redhat.com/download-manager/file/devstudio-11.0.0.GA-installer-standalone.jar.

To install the IDE, follow the instructions from the Red Hat Developer Studio installation guide at:

https://access.redhat.com/documentation/en-us/red_hat_ jboss_developer_studio/11.3/html-

single/installation_guide/#installer

INSTALLING A WEB BROWSER REST CLIENT
The chapter on developing and testing RESTful services requires a REST client add-on for a web

browser to simplify testing. We recommend you install the REST client add-on for Firefox.

Install Firefox 62.0 or later either by using your package manager on Linux distributions, or by

downloading the installer from the Mozilla website at www.mozilla.org. After Firefox has been

installed, download the REST client add-on and install it from the following URL:

JB083x-EAP-7.0-en-1-20181001 xiii

https://raw.githubusercontent.com/RedHatTraining/JB083x-lab/master/settings.xml
https://raw.githubusercontent.com/RedHatTraining/JB083x-lab/master/settings.xml
https://developers.redhat.com
https://developers.redhat.com/download-manager/file/jboss-eap-7.0.0-installer.jar
https://developers.redhat.com/download-manager/file/jboss-eap-7.0.0-installer.jar
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/installation_guide/#installer_installation
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/installation_guide/#installer_installation
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/installation_guide/#installer_installation
https://developers.redhat.com/download-manager/file/devstudio-11.0.0.GA-installer-standalone.jar
https://developers.redhat.com/download-manager/file/devstudio-11.0.0.GA-installer-standalone.jar
https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.3/html-single/installation_guide/#installer
https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.3/html-single/installation_guide/#installer

Introduction

https://addons.mozilla.org/en-US/firefox/addon/restclient

Figure 0.1: Firefox REST client add-on

Click Add to Firefox to install the add-on.

If you do not want to use Firefox, use the links below to download alternative REST clients:

• For macOS, download Cocoa REST client App [https://mmattozzi.github.io/cocoa-rest-client/],

or The Postman App [https://www.getpostman.com/].

• For Microsoft Windows systems, download Postman [https://www.getpostman.com/], or

Insomnia [https://insomnia.rest/].

• For Google Chrome, download Advanced REST client [https://install.advancedrestclient.com],

or Postman [https://chrome.google.com/webstore/detail/postman/

fhbjgbiflinjbdggehcddcbncdddomop].

xiv JB083x-EAP-7.0-en-1-20181001

https://addons.mozilla.org/en-US/firefox/addon/restclient
https://mmattozzi.github.io/cocoa-rest-client/
https://mmattozzi.github.io/cocoa-rest-client/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://insomnia.rest/
https://insomnia.rest/
https://install.advancedrestclient.com
https://install.advancedrestclient.com
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop

CHAPTER 1

TRANSITIONING TO MULTI-
TIERED APPLICATIONS

GOAL Describe Java EE features and distinguish
between Java EE and Java SE applications.

OBJECTIVES • Describe "enterprise application" and name
some of the benefits of Java EE applications.

• Describe various multi-tiered architectures.

• Describe how to run a Java application with
Red Hat JBoss Developer Studio and Apache
Maven.

SECTIONS • Describing Enterprise Applications (and Quiz)

• Describing Multi-tiered Application
Architecture (and Quiz)

• Developing Applications Using Red Hat JBoss
Developer Studio (and Guided Exercise)

JB083x-EAP-7.0-en-1-20181001 1

CHAPTER 1 | Transitioning to Multi-tiered Applications

DESCRIBING ENTERPRISE
APPLICATIONS

OBJECTIVES
After completing this section, students should be able to describe the basic concepts and benefits

of enterprise applications.

ENTERPRISE APPLICATIONS
An enterprise application is a software application typically used in large business organizations.

Enterprise applications often provide the following features:

• Support for concurrent users and external systems.

• Support for synchronous and asynchronous communication using different protocols.

• Ability to handle transactional workloads that coordinate between data repositories such as

queues and databases.

• Support for scalability to handle future growth.

• A resilient and distributed platform to ensure high availability.

• Support for highly secure access control for different types of users.

• Ability to integrate with back-end systems and web services.

Typical examples of enterprise applications include Enterprise Resource Planning (ERP), Customer

Relationship Management (CRM), Content Management Systems (CMS), e-commerce systems,

internet and intranet portals.

BENEFITS OF JAVA EE ENTERPRISE APPLICATIONS
Java Enterprise Edition (Java EE) is a specification for developing enterprise applications using

Java. It is a platform-independent standard that is developed under the guidance of the Java

Community Process (JCP).

The Java EE 7 specification consists of a number of component application

programming interfaces (API) that are implemented by an application server. The

Red Hat JBoss Enterprise Application Platform (EAP), which you will use in this course, implements

the Java EE standard.

The benefits of developing Java EE based enterprise applications are:

• Platform-independent applications can be developed and will run on many different types of

operating systems (on small PCs as well as large mainframes).

• Applications are portable across Java EE compliant application servers due to the Java EE

standard.

• The Java EE specification provides a large number of APIs typically used by enterprise

applications such as web services, asynchronous messaging, transactions, database connectivity,

thread pools, batching utilities, and security. There is no need to develop these components

manually, thereby reducing development time.

2 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

• A large number of third-party, ready-to-use applications and components that target specific

domains such as finance, insurance, telecom, and other industries are certified to run and

integrate with Java EE application servers.

• A large number of sophisticated tools such as IDEs, monitoring systems, enterprise application

integration (EAI) frameworks, and performance measurement tools are available for Java EE

applications from third-party vendors.

COMPARING JAVA ENTERPRISE EDITION (JAVA EE)
AND JAVA SE
When you install the Java Development Kit (JDK) for your operating system, it provides the

compiler, debugger, tools, and runtime environment for hosting your Java applications, the Java

Virtual Machine (JVM), and a large set of reusable component classes that are commonly used

by applications. This application programming interface (API) provides packages and classes for

networking, I/O, XML parsing, database connectivity, developing graphical user interfaces (GUI),

and many more. This API is commonly known as the Java Standard Edition (Java SE).

Java SE is generally used to develop stand-alone programs, tools, and utilities that are mainly run

from the command line, GUI programs, and server processes that need to run as daemons (that is,

programs that run continuously in the background until they are stopped).

The Java EE specification is a set of APIs built on top of Java SE. It provides a runtime environment

for running multi-threaded, transactional, secure and scalable enterprise applications. It is

important to note that unlike Java SE, Java EE is mainly a set of standard specifications for an API,

and runtime environments that implement these APIs are generally called as application servers.

An application server that passes a test suite called the Technology Compatibility Kit (TCK) for

Java EE is known as a Java EE compliant application server. There are different versions of Java

EE. While new APIs and features are incrementally added in each new version, compatibility with

earlier versions is strictly maintained.

Java EE includes support for multiple profiles, or subsets of APIs. For example, the Java EE 7

specification defines two profiles: the full profile and the web profile.

The Java EE 7 web profile is designed for web application development and supports a subset of

the APIs defined by Java EE 7 related web-based technologies.

The Java EE 7 full profile contains all APIs defined by Java EE 7 (including all the items in the

web profile). When developing EJBs, messaging applications, and web services (in contrast to web

applications), you should use the full profile.

A Java EE 7 compliant application server, such as

Red Hat JBoss Enterprise Application Platform (EAP), implements both profiles and provides

a number of APIs that are commonly used in enterprise applications.

BUILDING, PACKAGING AND DEPLOYING JAVA SE AND
JAVA EE APPLICATIONS
For relatively simple standalone Java SE applications, the code can be built, packaged, and run

on the command line by using the compiler and runtime tools (java, javac, jar, jdb, and so on)

that are part of the JDK. Several mature Integrated Development Environments (IDEs), such as

Red Hat JBoss Developer Studio or Eclipse, are used to simplify the building and packaging process.

The preferred way to ship standalone Java applications in a platform-neutral way is to package

the application as a Java Archive (JAR) file. JAR files can optionally be made executable by adding

manifest entries (a plain text file packaged alongside the Java classes inside the JAR file) to the

JAR file to indicate the main runnable class.

JB083x-EAP-7.0-en-1-20181001 3

CHAPTER 1 | Transitioning to Multi-tiered Applications

Java EE applications consist of multiple components that depend on a large number of JAR files

that are required at runtime. The deployment process for Java EE applications is different. Java EE

applications are deployed on a Java EE compatible application server and these deployments can

be of different types:

• JAR files: Individual modules of an application and Enterprise Java Beans (EJBs) can be

deployed as separate JAR files. Third-party libraries and frameworks are also packaged as JAR

files. If your application depends on these libraries, the library JAR files should be deployed on

the application server. JAR files have a .jar extension.

• Web Archive (WAR) files: If your Java EE application has a web-based front end or is providing

RESTful service endpoints, then code and assets related to the web front end and the services

can be packaged as a WAR file. A WAR file has a .war extension and is essentially a compressed

file containing code, static HTML, images, CSS, and JS assets, as well as XML deployment

descriptor files along with dependent JAR files packaged inside it.

• Enterprise Archive (EAR) files: An EAR file has an extension of .ear and is essentially a

compressed file with one or more WAR or JAR files and some XML deployment descriptors

inside it. It is useful in scenarios where the application contains multiple WAR files or reuses

some common JAR files across modules. In such cases, it is easier to deploy and manage the

application as a single deployable unit.

It is also a best practice to use a build tool such as Apache Maven to simplify building, packaging,

testing, executing, and deploying Java SE and Java EE applications. Maven has a plug-in

architecture to extend its core functionality.

There are Maven plug-ins for building, packaging, and deploying Java EE applications. All

deployment types are supported. Maven can also deploy and undeploy applications to and from

JBoss EAP without restarting the application server. Integrated Development Environments (IDEs)

such as Red Hat JBoss Developer Studio also have native support for Maven built-in by default. All

Maven tasks can be run from within the IDE itself without using the command line.

REFERENCES
JCP
https://www.jcp.org/en/home/index

Java EE 7 Specification JSR
https://www.jcp.org/en/jsr/detail?id=342

Red Hat JBoss EAP 7 Release Notes
https://access.redhat.com/documentation/en-us/

red_hat_ jboss_enterprise_application_platform/7.0/html-

single/7.0.0_release_notes

4 JB083x-EAP-7.0-en-1-20181001

https://www.jcp.org/en/home/index
https://www.jcp.org/en/jsr/detail?id=342
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/7.0.0_release_notes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/7.0.0_release_notes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/7.0.0_release_notes

CHAPTER 1 | Transitioning to Multi-tiered Applications

QUIZ

DESCRIBING ENTERPRISE
APPLICATIONS

Choose the correct answers to the following questions:

 1. Which of the following two statements can be considered an enterprise application?
(Choose two.)
a. An online banking system for a bank with millions of customers.

b. A program that calculates the factorial of numbers between 1 and 100,000.

c. A real-time embedded system that controls a remote satellite.

d. An online payment gateway for a credit card company that processes millions of

transactions per day.

e. A program that simulates a 3D representation of an aircraft to study the impact of

turbulence on aircraft of different shapes and sizes.

 2. Which of the following two statements about the Java EE specification and application
servers are correct? (Choose two.)
a. There are different versions of the specification for different operating systems.

Applications should be implemented differently on each operating system leveraging the

operating system specific features.

b. Although an application is implemented to be fully Java EE compliant, you need to re-

implement certain features and recompile the application when deploying it on different

Java EE compliant servers.

c. A fully Java EE compliant application can be deployed on different Java EE compliant

servers without recompiling and re-implementing features.

d. A Java EE compliant application server provides facilities for asynchronous messaging.

e. A Java EE compliant application server does not provide thread pooling features by

default. This feature has to be manually implemented by the developer.

 3. Which statement describing a Java EE compliant application server is correct?
a. The ability to create web services (SOAP, REST) are not provided by default.

b. No transaction management facilities are available. All transactions have to be manually

managed by the developer.

c. The application server provides automatic transaction management. If required, the

developer can write code to also manage transactions manually.

d. No database connectivity API (JPA) is provided by default. Third-party external libraries

have to be used for connecting to databases.

JB083x-EAP-7.0-en-1-20181001 5

CHAPTER 1 | Transitioning to Multi-tiered Applications

 4. A company named ABC Inc is migrating a large and complex legacy mainframe
application written in COBOL™ to the Java EE platform. Which of the following three
features can be leveraged from a Java EE compliant application server without
manually implementing them? (Choose three.)
a. Database connectivity to an RDBMS (which is JDBC compliant).

b. A utility that reads and writes EBCDIC encoded files to and from a legacy mainframe

system with a proprietary file system.

c. Role-based security.

d. Batch operations for scheduled execution of a reporting application, that generates

reports from an RDBMS on a daily, monthly and quarterly basis.

e. A custom adapter to communicate with a remote legacy hierarchical database

management system that is not JDBC compliant.

 5. Which of the following two statements about the deployment types in Java EE 7 are
correct? (Choose two.)
a. Web applications are typically packaged as JAR files for deployment to an application

server.

b. Web applications are typically packaged as WAR files for deployment to an application

server.

c. A WAR file can contain EAR and JAR files as well as deployment descriptors.

d. An EAR file can contain WAR files, JAR files, and deployment descriptors.

e. An EAR file cannot be directly deployed inside an application server. You have to deploy

the WAR and JAR files inside it separately.

 6. Which of the following two statements about Apache Maven are correct? (Choose two.)
a. Maven can be used to build, package, and test both Java EE and Java SE applications.

b. Maven can only be used to build, package, and test Java EE applications. Maven cannot be

used for building, packaging, and testing Java SE applications.

c. Maven cannot deploy and undeploy applications to and from JBoss EAP. You have to

manually restart the application server after every deployment and undeployment.

d. Maven can automatically deploy and undeploy applications from JBoss EAP. There is no

need to restart the application server after every deployment and undeployment.

e. There is no IDE support for Maven tasks. All Maven tasks have to invoked from the

command line.

6 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

SOLUTION

DESCRIBING ENTERPRISE
APPLICATIONS

Choose the correct answers to the following questions:

 1. Which of the following two statements can be considered an enterprise application?
(Choose two.)
a. An online banking system for a bank with millions of customers.

b. A program that calculates the factorial of numbers between 1 and 100,000.

c. A real-time embedded system that controls a remote satellite.

d. An online payment gateway for a credit card company that processes millions of

transactions per day.

e. A program that simulates a 3D representation of an aircraft to study the impact of

turbulence on aircraft of different shapes and sizes.

 2. Which of the following two statements about the Java EE specification and application
servers are correct? (Choose two.)
a. There are different versions of the specification for different operating systems.

Applications should be implemented differently on each operating system leveraging the

operating system specific features.

b. Although an application is implemented to be fully Java EE compliant, you need to re-

implement certain features and recompile the application when deploying it on different

Java EE compliant servers.

c. A fully Java EE compliant application can be deployed on different Java EE compliant

servers without recompiling and re-implementing features.

d. A Java EE compliant application server provides facilities for asynchronous messaging.

e. A Java EE compliant application server does not provide thread pooling features by

default. This feature has to be manually implemented by the developer.

 3. Which statement describing a Java EE compliant application server is correct?
a. The ability to create web services (SOAP, REST) are not provided by default.

b. No transaction management facilities are available. All transactions have to be manually

managed by the developer.

c. The application server provides automatic transaction management. If required, the

developer can write code to also manage transactions manually.

d. No database connectivity API (JPA) is provided by default. Third-party external libraries

have to be used for connecting to databases.

JB083x-EAP-7.0-en-1-20181001 7

CHAPTER 1 | Transitioning to Multi-tiered Applications

 4. A company named ABC Inc is migrating a large and complex legacy mainframe
application written in COBOL™ to the Java EE platform. Which of the following three
features can be leveraged from a Java EE compliant application server without
manually implementing them? (Choose three.)
a. Database connectivity to an RDBMS (which is JDBC compliant).

b. A utility that reads and writes EBCDIC encoded files to and from a legacy mainframe

system with a proprietary file system.

c. Role-based security.

d. Batch operations for scheduled execution of a reporting application, that generates

reports from an RDBMS on a daily, monthly and quarterly basis.

e. A custom adapter to communicate with a remote legacy hierarchical database

management system that is not JDBC compliant.

 5. Which of the following two statements about the deployment types in Java EE 7 are
correct? (Choose two.)
a. Web applications are typically packaged as JAR files for deployment to an application

server.

b. Web applications are typically packaged as WAR files for deployment to an application

server.

c. A WAR file can contain EAR and JAR files as well as deployment descriptors.

d. An EAR file can contain WAR files, JAR files, and deployment descriptors.

e. An EAR file cannot be directly deployed inside an application server. You have to deploy

the WAR and JAR files inside it separately.

 6. Which of the following two statements about Apache Maven are correct? (Choose two.)
a. Maven can be used to build, package, and test both Java EE and Java SE applications.

b. Maven can only be used to build, package, and test Java EE applications. Maven cannot be

used for building, packaging, and testing Java SE applications.

c. Maven cannot deploy and undeploy applications to and from JBoss EAP. You have to

manually restart the application server after every deployment and undeployment.

d. Maven can automatically deploy and undeploy applications from JBoss EAP. There is no

need to restart the application server after every deployment and undeployment.

e. There is no IDE support for Maven tasks. All Maven tasks have to invoked from the

command line.

8 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

DESCRIBING MULTI-TIERED
APPLICATION ARCHITECTURE

OBJECTIVES
After completing this section, students should be able to explain multi-tiered applications and

architectures.

MULTI-TIERED APPLICATION ARCHITECTURE
Java EE applications are designed with a multi-tier architecture in mind. The application is split

into components, each serving a specific purpose. Each component is arranged logically in a tier.

Some of the tiers run on separate physical machines or servers. The application's business logic

can run on application servers hosted in one data center, while the actual data for the database can

be stored on a separate server.

The advantage of using tiered architectures is that as the application scales to handle more and

more end users, each of the tiers can be independently scaled to handle the increased workload

by adding more servers (a process known as "scale out"). There is also the added benefit that

components across tiers can be independently upgraded without impacting other components.

In a classic web-based Java EE application architecture, there are four tiers:

• Client Tier: This is usually a browser for rendering the user interface on the end-user machines,

or an applet embedded in a web page (increasingly rare).

• Web Tier: The web tier components run inside an application server and generate HTML or other

markup that can be rendered or consumed by components in the client tier. This tier can also

serve non-interactive clients such as other enterprise systems (both internal and external) via

protocols such as Simple Object Access Protocol (SOAP) or Representational
State Transfer (REST) web services.

• Business Logic Tier: The components in the business logic tier contain the core business logic for

the application. These are usually a mix of Enterprise Java Beans (EJB), Plain Old Java Objects

(POJO), Entity Beans, Message Driven Beans, and Data Access Objects (DAO), which interface

with persistent storage systems such as RDBMS, LDAP, and others.

• Enterprise Information Systems (EIS) Tier: Many enterprise applications store and manipulate

persistent data that is consumed by multiple systems and applications within an organization.

Examples are relational database management systems (RDBMS), Lightweight Directory Access

Protocol (LDAP) directory services, NoSQL databases, in-memory databases, mainframes, or

other back-end systems that store and manage an organization's data securely.

TYPES OF MULTI-TIER APPLICATION ARCHITECTURES
The Java EE specification is designed to accommodate many different types of multi-tier

applications. Some of the most common ones are briefly highlighted below:

Web-centric architecture
This type of architecture is for simple applications with a browser-based front end and a simple

back end powered by Servlets, Java Server Pages (JSP), or Java Server Faces (JSF). Features such

as transactions, asynchronous messaging, and database access are not used.

JB083x-EAP-7.0-en-1-20181001 9

CHAPTER 1 | Transitioning to Multi-tiered Applications

Figure 1.1: Simple Web-Centric architecture

Combined web and business logic component-based
architecture
In this architecture, a browser in the client tier interfaces with a web tier consisting of Servlets,

JSPs, or JSF pages, which are responsible for rendering the user interface, controlling page

flow, and security. The core business logic is hosted in a separate business logic tier, which has

Java EE components such as EJBs, Entity Beans (JPA), and Message Driven Beans (MDB). The

business logic tier components integrate with enterprise information systems such as relational

databases and back-office applications that expose an API for managing persistent data, and

provide transactional capabilities for the application.

10 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

Figure 1.2: Combined web and business logic component-based architecture

Business-to-Business architecture (B2B)
In this type of architecture, the front end is usually not an interactive graphical user interface

(GUI) that is accessed by end users, but an internal or external system that integrates with the

application and exchanges data using a mutually understood standard protocol such as Remote

Method Invocation (RMI), HTTP, Simple Object Access Protocol (SOAP), or Representational State

Transfer (REST).

JB083x-EAP-7.0-en-1-20181001 11

CHAPTER 1 | Transitioning to Multi-tiered Applications

Figure 1.3: Business-to-Business architecture

Web service application architecture
Modern application architectures are often designed to be based on web services. In this

architecture, the application provides an API that is accessed over an HTTP-based protocol such

as SOAP or REST via a set of services (endpoints) corresponding to the business function of the

application. These services are consumed by non-interactive applications (can be internal or

third-party) or an interactive HTML/JavaScript front end using frameworks such as AngularJS,

Backbone.js, React, and many more.

12 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

Figure 1.4: Simple web service application architecture

JB083x-EAP-7.0-en-1-20181001 13

CHAPTER 1 | Transitioning to Multi-tiered Applications

QUIZ

MULTI-TIERED APPLICATION
ARCHITECTURE

Choose the correct answers to the following questions:

 1. You have been asked to design a component that calculates discount rates for different
products in an online shopping application. Which logical tier does this component best
belong to?
a. Client tier

b. Web tier

c. Business logic tier

d. Data or EIS Tier

e. None of the above

 2. Which of the following two applications are a good fit for a simple web-centric
architecture? (Choose two.)
a. A browser-based servlet application that prints the current time in three different time

zones in the USA: Pacific (PST), Central (CST), and Eastern (EST).

b. An application that tracks the location of a fleet of cars using GPS.

c. An application that reads data from a large mainframe and then stores it in a relational

database. The application also allows an external third-party system to access the data in

the database using SOAP web services.

d. A health-check application that is deployed on an application server, which displays a

status of "OK" (when accessed from a browser) if the server is up and running normally.

e. An application that provides weather information in cities around the world. The

application accepts a city name as input (over a REST endpoint) and then provides current

weather information and a 5-day forecast in XML format.

 3. Which of the following two statements about a Business-to-Business (B2B) architecture
is correct? (Choose two.)
a. B2B applications must be always web based and should have an interactive front end.

b. B2B applications must only support a single protocol for security reasons.

c. B2B applications always communicate using RMI.

d. B2B applications can communicate over RMI, SOAP, REST, or any mutually agreed-upon

protocol.

e. B2B applications can support both interactive and non-interactive consumers and users.

14 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

 4. Which of the following two statements about the combined web and business logic
component architecture are correct? (Choose two.)
a. Transactions are managed in the business logic tier (in EJBs).

b. Transactions must always be managed in the web layer.

c. Asynchronous messaging using Message Driven Beans (MDB) cannot be used.

d. Asynchronous messaging using Message Driven Beans (MDB) can be used.

JB083x-EAP-7.0-en-1-20181001 15

CHAPTER 1 | Transitioning to Multi-tiered Applications

SOLUTION

MULTI-TIERED APPLICATION
ARCHITECTURE

Choose the correct answers to the following questions:

 1. You have been asked to design a component that calculates discount rates for different
products in an online shopping application. Which logical tier does this component best
belong to?
a. Client tier

b. Web tier

c. Business logic tier

d. Data or EIS Tier

e. None of the above

 2. Which of the following two applications are a good fit for a simple web-centric
architecture? (Choose two.)
a. A browser-based servlet application that prints the current time in three different time

zones in the USA: Pacific (PST), Central (CST), and Eastern (EST).

b. An application that tracks the location of a fleet of cars using GPS.

c. An application that reads data from a large mainframe and then stores it in a relational

database. The application also allows an external third-party system to access the data in

the database using SOAP web services.

d. A health-check application that is deployed on an application server, which displays a

status of "OK" (when accessed from a browser) if the server is up and running normally.

e. An application that provides weather information in cities around the world. The

application accepts a city name as input (over a REST endpoint) and then provides current

weather information and a 5-day forecast in XML format.

 3. Which of the following two statements about a Business-to-Business (B2B) architecture
is correct? (Choose two.)
a. B2B applications must be always web based and should have an interactive front end.

b. B2B applications must only support a single protocol for security reasons.

c. B2B applications always communicate using RMI.

d. B2B applications can communicate over RMI, SOAP, REST, or any mutually agreed-upon

protocol.

e. B2B applications can support both interactive and non-interactive consumers and users.

16 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

 4. Which of the following two statements about the combined web and business logic
component architecture are correct? (Choose two.)
a. Transactions are managed in the business logic tier (in EJBs).

b. Transactions must always be managed in the web layer.

c. Asynchronous messaging using Message Driven Beans (MDB) cannot be used.

d. Asynchronous messaging using Message Driven Beans (MDB) can be used.

JB083x-EAP-7.0-en-1-20181001 17

CHAPTER 1 | Transitioning to Multi-tiered Applications

DEVELOPING APPLICATIONS USING
RED HAT JBOSS DEVELOPER STUDIO

OBJECTIVES
After completing this section, students should be able to:

• Describe the Red Hat JBoss Developer Studio editor features and installation process.

• Describe how to use Maven to manage application dependencies.

RED HAT JBOSS DEVELOPER STUDIO
Red Hat JBoss Developer Studio is an Integrated Development Environment (IDE) provided by

Red Hat to simplify the development of Java EE applications. It is a set of integrated and well-

tested plug-ins on top of the Eclipse™ platform. It has the following built-in features:

• Plug-ins to simplify development of applications using Red Hat JBoss middleware.

• Unit testing plug-ins and wizards to do Test Driven Development (TDD).

• A visual debugger to help debug local and remote Java applications.

• Syntax highlighting and code completion for the most commonly used Java EE APIs, such as

JPA, JSF, JSP, EL, and many more.

• Maven integration to simplify project builds, packaging, testing, and deployment.

• Unit adapters and plug-ins to work with JBoss EAP. You can control the life cycle (start, stop,

restart, deployment, undeployment) of EAP without leaving the IDE.

APACHE MAVEN
The current best practice for developing, testing, building, packaging, and deploying Java SE and

Java EE applications is to use Apache Maven. Maven is a project management tool that uses a

declarative approach (in an XML file called pom.xml at the root of the project folder) to specify

how to build, package, execute (for Java SE applications), and deploy applications together with

dependency information.

Maven has a small core and has a large number of plug-ins that extend the core functionality to

provide features such as:

• Predefined build life cycles for end products, called artifacts, like WAR, EAR, and JAR.

• Built-in best practices such as source file locations and running unit tests for each build.

• Dependency management with automatic downloading of missing dependencies.

• Extensive plug-in collection including plug-ins specific to JBoss development and deployment.

• Project report generation including Javadocs, test coverage, and many more.

This section takes a look at the features and operational constructs of Maven that are used in this

course. This all starts with the Maven project file, an XML document describing the artifact, its

dependencies, project properties, and any plug-ins to be invoked in any of the available life-cycle

steps. This file is always named pom.xml. The following is an abbreviated example of a project

pom.xml file:

18 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

<?xml version="1.0"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd"

 xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.redhat.training</groupId>

 <artifactId>example</artifactId>

 <version>0.0.1</version>

 <packaging>war</packaging>

 <name></name>

 <dependencies>

 <dependency>

 <groupId>org.richfaces.ui</groupId>

 <artifactId>richfaces-components-ui</artifactId>

 <version>4.0.0.Final</version>

 </dependency>

...

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>2.3.2</version>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

...

 </build>

</project>

The group-id is like a Java package.

The artifact-id is a project name.

The version of the project.

The packaging defines how the project will be packaged. In this case it is a war type.

The dependency describes the resources a project depends on. These resources are required

to build and run the project correctly. Maven downloads and links the dependencies from the

specified repositories.

The plugins for the project.

A benefit of using Maven is the automatic handling of source code compilation and resource

inclusion in the artifact. Maven creates a standard project structure. The following directory

naming conventions are mandatory:

JB083x-EAP-7.0-en-1-20181001 19

CHAPTER 1 | Transitioning to Multi-tiered Applications

Maven Directory Structures

ASSET DIRECTORY OUTCOME

Java Source Code src/main/java The directory contains Java

classes included in WEB-
INF/classes for a WAR or

root of a JAR.

Configuration Files src/main/resources The directory contains

configuration files included

in WEB-INF/classes for a

WAR or root of JAR.

Java Test Code src/test/java The directory contains the

test source code.

Test Configuration Files src/test/resources The directory contains the

test resources.

When you name dependencies in the pom.xml file, you can give them a scope. These scopes

control where the dependency is used in the build life cycle and whether they are included in the

artifact. The following scopes are the most common:

Maven Dependency Scopes

SCOPE OUTCOME

compile Compile is the default scope if no other

scope is specified and is required to resolve

the import statements.

test Test is required to compile and run the unit

tests. It is not included in the artifact.

runtime The runtime dependency is not required for

compilation. It is used for any executions and

is included in the artifact.

provided Provided scope is like compile and the

Java EE container provides the dependency at

runtime. It is used during build and test.

Maven is integrated in Red Hat JBoss Developer Studio, but you may want to invoke it from the

command line. Here are some common commands:

• mvn package - Compiles, tests, and builds the artifact.

• mvn package -Dmaven.test.skip=true - Builds the artifact and skip all tests.

• mvn wildfly:deploy - To deploy the artifact to the instance running at $JBOSS_HOME

(assumes plug-in configured in pom.xml).

• mvn install - This is like the package but installs the artifact in your local Maven repository

for use in other projects as a dependency.

20 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

NOTE
IDEs such as Red Hat JBoss Developer Studio are aware of Maven projects and you

can run Maven tasks directly from within the IDE without requiring the use of the

command line.

Throughout this course you will be developing a number of applications that will be deployed

on a JBoss EAP 7 application server. These applications will use several APIs from the Java EE 7

specification. You will make use of Maven and Red Hat JBoss Developer Studio extensively in this

course to manage application packaging and deployment.

To build, package, and run a standalone application that uses only the Java SE API with Maven, you

will run the following commands:

$ mvn clean package

$ java -jar target/myapp.jar

The mvn clean package command builds the application as an executable JAR file and the

java -jar command executes it.

In contrast, the web-based applications are built and deployed to JBoss EAP by using the following

command:

$ mvn clean package wildfly:deploy

The above command deletes the old WAR file, compiles the code, and builds a WAR file that is

deployed to a running instance of JBoss EAP. If an older version of the application is already

deployed, the old version is undeployed and the new version is deployed without restarting

the application server. This process is called hot deployment and is used extensively during

development and testing, as well as in production rollouts.

REFERENCES
Eclipse
https://eclipse.org

Apache Maven
https://maven.apache.org

JB083x-EAP-7.0-en-1-20181001 21

https://eclipse.org
https://maven.apache.org

CHAPTER 1 | Transitioning to Multi-tiered Applications

GUIDED EXERCISE

DEVELOPING APPLICATIONS USING
RED HAT JBOSS DEVELOPER STUDIO

In this exercise, you will build and run a simple command-line application using Red Hat

JBoss Developer Studio and Apache Maven.

OUTCOMES
You should be able to import the source code of a simple command-line application into

Red Hat JBoss Developer Studio and run it using Maven.

BEFORE YOU BEGIN
The source code for the command-line application is available in a Git repository.

Open a terminal window on your system, and run the following command to download the lab

files required for this workshop.

$ git clone https://github.com/RedHatTraining/JB083x-lab

The above command creates a directory called JB083x-lab. This directory contains the

source code for all the applications used in this course. There are two subdirectories in this

directory named labs and solutions, which contain the source code for all the labs, and

the corresponding solution files for the labs in this course.

IMPORTANT
You only need to clone the Git repository once during the entire course. You

do not have to clone the repository for every exercise in this course.

The source code for the application used in this exercise is in the labs/todojse directory.

1. Import the todojse project into Red Hat JBoss Developer Studio.

1.1. Start the Red Hat JBoss Developer Studio IDE.

1.2. Select a workspace folder.

In the Eclipse Launcher window, accept the default value in the Workspace field,

select Use this as the default and do not ask again, and then click Launch.

22 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

Figure 1.5: Select workspace

NOTE
The default workspace path may be different from the one shown in the screenshot

depending on your operating system and the user account with which you are

running this exercise.

1.3. In the IDE menu, click File → Import to open the Import wizard.

On the Select page, select Maven → Existing Maven Projects, and then click Next.

1.4. In the Maven projects page, click Browse to open the Select Root Folder window.

Navigate to the JB083x-lab → labs → todojse directory, and then click OK.

On the Maven projects page, click Finish.

1.5. Watch the IDE status bar (lower-right corner) to monitor the progress of the import

operation. It may take a few minutes to download all of the required dependencies.

2. Explore the Maven pom.xml file.

2.1. Expand the todojse item in the Project Explorer pane on the left, and then double-

click the pom.xml file.

The Overview tab displays in the main editor window, showing a high-level view

of the project. The Group Id, Artifact Id and the Version (commonly

abbreviated as the GAV coordinates of a project or module) is shown in this tab.

2.2. Click the Dependencies tab to view the project dependencies (libraries, frameworks,

and modules that this project depends on). In this case, no dependencies on any

external libraries exist; it only utilizes the Java Standard Library.

2.3. Click the pom.xml tab to view the full text of the pom.xml file.

Briefly review the GAV details for this project:

<groupId>com.redhat.training</groupId>

<artifactId>todojse</artifactId>

JB083x-EAP-7.0-en-1-20181001 23

CHAPTER 1 | Transitioning to Multi-tiered Applications

<version>1.0</version>

The packaging format for this project is jar. Maven ensures that when the project

is built it creates a JAR file with appropriate MANIFEST entries containing metadata

about the JAR file.

<packaging>jar</packaging>

The project is compatible with JDK 1.8.

 <!-- maven-compiler-plugin -->

 <maven.compiler.target>1.8</maven.compiler.target>

 <maven.compiler.source>1.8</maven.compiler.source>

Maven is extensible by using a large number of plug-ins. You can control different

aspects of how your project is built, packaged, tested, and deployed by declaring

appropriate plug-ins.

In this project, you are using the exec-maven-plugin to run the main class in the

project from the command line or from within the JBoss Developer Studio. The main

method, which serves as the entry point for the application when it is run, is declared

as the com.redhat.training.TestTodoMap class.

<artifactId>exec-maven-plugin</artifactId>

 <version>1.5.0</version>

 <executions>

 <execution>

 <goals>

 <goal>java</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <mainClass>com.redhat.training.TestTodoMap</mainClass>

 </configuration>

You also use the maven-assembly-plugin to build a platform-independent

executable JAR file, which you can run using the java -jar command. Although

this project does not use any external dependencies, projects with a large number

of dependent JAR files can be packaged as a single large fat jar that can be directly

executed without explicitly adding all the dependent JAR files to the CLASSPATH.

<artifactId>maven-assembly-plugin</artifactId>

<version>2.6</version>

<executions>

 <execution>

 <id>package-jar-with-dependencies</id>

 <phase>package</phase>

 <goals>

 <goal>single</goal>

 </goals>

24 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

3. Explore the application source code.

3.1. Navigate to src/main/java/com/redhat/training in the Project Explorer and

double-click the TestTodoMap.java class to view the source code in the main editor

window.

3.2. The todojse application is a command-line application with no graphical user

interfaces. The main method invokes the executeMenu() function, which displays a

menu with a number of options to manage To Do list.

The TodoMap.java class contains the main business logic for this application. This

class stores and manages a Map of TodoItem objects. The TodoItem class is a

simple Java Bean class that encapsulates the attributes of a To Do List; namely, an

item field, which contains the task description, and a status field that indicates if

the task is pending or complete.

The Status.java file declares an enum with the two options for the status of an

item, either PENDING or COMPLETED.

3.3. Briefly review the source code of the addTodo(), printTodo(),

completeTodo(), deleteTodo() and findItemTodo() methods in the

TodoMap class. These methods implement how tasks are created, listed, marked as

completed, deleted, and found respectively.

These methods are invoked from the main runnable class, depending on which menu

option the user selects. If they select Q, then the application exits.

NOTE
The todojse application does not persist any data from the program. The To Do

list task items are stored in a Map object in memory and the data is lost when the

program exits.

4. Use Maven to build and run the todojse application from the command line.

4.1. Before you build and run the application from within the IDE, use Maven to build and

run it from the command line.

Open a new terminal window and navigate to the JB083x-lab/labs/todojse
folder. You can now build and package the application as a JAR file using Maven's

package goal.

Use the following command to build the application:

[student@localhost todojse]$ mvn clean package

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building todojse 1.0

[INFO] --

[INFO]

...

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ todojse ---

[INFO] Building jar: ...todojse/target/todojse-1.0.jar

...

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 09:48 mins

[INFO] Finished at: 2017-09-20T08:13:03+05:30

JB083x-EAP-7.0-en-1-20181001 25

CHAPTER 1 | Transitioning to Multi-tiered Applications

[INFO] Final Memory: 22M/303M

Verify that you can see a BUILD SUCCESS message from Maven and the

todojse-1.0.jar is built successfully and copied to the JB083x-lab/labs/
todojse/target folder.

4.2. Run the application using the Maven exec plug-in:

[student@localhost todojse]$ mvn exec:java

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building todojse 1.0

[INFO] --

[INFO]

[INFO] --- exec-maven-plugin:1.5.0:java (default-cli) @ todojse ---

[N]ew | [C]omplete | [R]ead | [D]elete | [L]ist | [Q]uit:

4.3. Explore the application functionality by creating, completing, reading, listing, and

deleting a few to do items. Press Q to quit the application.

5. Run the todojse as an executable JAR file.

5.1. The mvn clean package command you ran earlier uses the Maven assembly plug-

in to build a stand-alone executable JAR file.

Run the application using the following command:

[student@localhost todojse]$ java -jar target/todojse-1.0.jar

5.2. Verify that the application launches and that the main menu is displayed.

26 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

6. Build and run the todojse application from within the IDE.

6.1. You can use the built-in Maven plug-in in the IDE to build, package, and run the

application.

The Maven plug-in in the IDE ships with a set of prepackaged Run Configurations for

cleaning and building projects. However, you will create a custom Run Configuration

and use it to build, package, and run the project.

6.2. Right-click the todojse project in the Project Explorer and then click Run As → Run

Configurations to launch the Run Configurations window.

Scroll down the list of options in the left panel and then select the Maven Build

option:

Figure 1.6: Maven run configuration

6.3. In the upper-left menu in the Run Configurations window, click New Launch

Configuration to create a new Maven launch configuration:

Figure 1.7: New run configuration

6.4. In the new run configuration window, add the following details:

• Name: maven package and exec

• Base Directory: Click Workspace, select the todojse project and then click OK.

• Goals: clean package exec:java

JB083x-EAP-7.0-en-1-20181001 27

CHAPTER 1 | Transitioning to Multi-tiered Applications

Figure 1.8: Run configuration details for Maven

Leave all other fields at their default values and click Apply.

6.5. Click Run at the bottom of the Run Configurations window.

The IDE Maven plug-in should now launch and build, package, and execute the

application. Use the Console tab at the bottom to monitor the build process and

verify that the application is executed and the main menu is displayed.

6.6. Press Q in the To Do List Application main menu to exit the application.

6.7. Right-click the todojse project in the Project Explorer, and select Close Project to

close this project.

This concludes the guided exercise.

28 JB083x-EAP-7.0-en-1-20181001

CHAPTER 1 | Transitioning to Multi-tiered Applications

SUMMARY

In this chapter, you learned:

• Enterprise applications are characterized by their ability to handle transactional workloads,

multi-component integration, security, distributed architectures, and scalability.

• Java Enterprise Edition (Java EE) is a specification for developing enterprise applications using

Java. It is a platform-independent standard that is developed under the aegis of the Java

Community Process (JCP). A software system that implements the Java EE specification is

called an application server.

• The Java SE API provides a rich set of modular, reusable components for implementing Java

applications. Java EE is built on top of Java SE and provides a set of APIs that are focused on

developing enterprise applications.

• Java EE applications are designed to be multi-tiered and can accommodate a variety of

architectures depending on the use case.

• Red Hat JBoss Developer Studio is an Eclipse™ based IDE provided by Red Hat that contains a

set of integrated plug-ins and tools to simplify development of Java EE enterprise applications.

It supports many application servers and you can manage the life cycle of the application server

from within the IDE itself.

• Apache Maven is the preferred tool for building, packaging, and deploying Java SE and Java EE

applications. JBDS has built-in support for Maven. Projects can be built, tested, packaged, and

deployed to application servers using Maven plug-ins.

JB083x-EAP-7.0-en-1-20181001 29

30 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2

PACKAGING AND DEPLOYING
APPLICATIONS TO AN
APPLICATION SERVER

GOAL Describe the architecture of a Java EE application
server, package an application, and deploy the
application to an EAP server.

OBJECTIVES • Identify the key features of application servers
and describe the Java EE server architecture.

• Package a simple Java EE application and
deploy it to JBoss EAP using Maven.

SECTIONS • Describing an Application Server (and Quiz)

• Packaging and Deploying a Java EE
Application (and Guided Exercise)

JB083x-EAP-7.0-en-1-20181001 31

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

DESCRIBING AN APPLICATION SERVER

OBJECTIVES
After completing this section, students should be able to:

• Identify key features of application servers and describe the Java EE server architecture.

• Identify various types of containers and server profiles.

APPLICATION SERVERS
An application server is a software component that provides the necessary runtime environment

and infrastructure to host and manage Java EE enterprise applications. The application server

provides features such as concurrency, distributed component architecture, portability to multiple

platforms, transaction management, web services, object relational mapping for databases (ORM),

asynchronous messaging, and security for enterprise applications.

In a Java SE application, these features must be implemented manually by the developer, which is

time consuming and difficult to implement correctly.

Figure 2.1: Java SE versus Java EE applications

JBOSS ENTERPRISE APPLICATION PLATFORM (EAP)
Red Hat JBoss Enterprise Application Platform 7, JBoss EAP 7, or simply EAP, is an application

server to host and manage Java EE applications.

EAP 7 is built on open standards, based on the Wildfly open source software, and provides the

following features:

• A reliable, standards compliant, light-weight, and supported infrastructure for deploying

applications.

• A modular structure that allows users to enable services only when they are required. This

improves performance and security, and reduces start and restart times.

• A web-based management console and management command-line interface (CLI) to configure

the server and provide the ability to script and automate tasks.

• It is certified for both Java EE 7 full, and web profiles.

• A centralized management of multiple server instances and physical hosts.

32 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

• Preconfigured options for features such as high-availability clustering, messaging, and

distributed caching are also provided.

EAP 7 makes developing enterprise applications easier because it provides Java EE APIs for

accessing databases, authentication, and messaging. Common application functionality is also

supported by Java EE APIs and frameworks, which are provided by EAP, for developing web user

interfaces, exposing web services, implementing cryptography, and other features. JBoss EAP also

makes management easier by providing runtime metrics, clustering services, and automation.

EAP has a modular architecture with a simple core infrastructure that controls the basic

application server life cycle and provides management capabilities. The core infrastructure is

responsible for loading and unloading modules. Modules implement the bulk of the Java EE 7 APIs.

Each Java EE component API module is implemented as a subsystem, which can be configured,

added, or removed as required through EAP's configuration file or management interface. For

example, to configure access to a database in EAP, configure the database connection details in the

datasources subsytem.

Figure 2.2: EAP 7 architecture

An important concept of the EAP architecture is the concept of a module. A module provides code

(Java Classes) to be used by EAP services or by applications.

Modules are loaded into an isolated Classloader, and can only see classes from other modules

when explicitly requested. This means a module can be implemented without any concerns about

potential conflicts with the implementation of other modules. All code running in EAP, including the

code provided by the core, runs inside modules. This includes application code, which means that

applications are isolated from each other and from EAP services.

This modular architecture allows for a very fine-grained control of code visibility. An application

can see a module that exposes a particular version of an API, while another application may see a

second module that exposes a different version of the same API.

An application developer can control this visibility manually and it can be very useful in some

scenarios. But for most common cases, EAP 7 automatically decides which modules to expose to an

application, based on its use of Java EE APIs.

CONTAINERS
A container is a logical component within an application server that provides a runtime context

for applications deployed on the application server. A container acts as an interface between the

JB083x-EAP-7.0-en-1-20181001 33

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

application components and the low-level infrastructure services provided by the application

server.

There are different containers for different types of components in an application. Application

components are deployed to containers and made available to other deployments. Deployment

is based on the deployment descriptors (XML configuration files that are packaged alongside

the code) or code-level annotations that indicate how the components should be deployed and

configured.

There are two main types of containers within a Java EE application server:

• Web containers: Deploy and configure web components such as Servlets, JSP, JSF, and other

web-related assets.

• EJB containers: Deploy and configure EJB, JPA, and JMS-related components. These types of

deployments are described in detail in later chapters.

Containers are responsible for security, transactions, JNDI lookups, and remote connectivity and

more. Containers can also manage runtime services, such as EJB and web component life cycles,

data source pooling, data persistence, and JMS messaging. For example, the Java EE specification

allows you to declaratively configure security so that only authorized users can invoke functionality

provided by an application component. This restriction is configured using either XML deployment

descriptors or annotations in code. This metadata is read by the container at deployment time and

it configures the component accordingly.

JAVA EE 7 PROFILES
A profile in the context of a Java EE application server is a set of component APIs that target a

specific application type. Profiles are a new concept introduced in Java EE 6. There are currently

two profiles defined in Java EE 7 and the JBoss EAP application server fully supports both profiles:

• Full Profile: Contains all Java EE technologies, including all APIs in the web profile as well as

others.

• Web Profile: Contains a full stack of Java EE APIs for developing dynamic web applications.

There are over 30 different technologies that comprise the full profile of Java EE. Each of these

technologies has their own JSR specification and version number. Combined, they provide an

impressive list of capabilities that allow Java EE applications to connect to databases, publish

and consume web services, serve up web applications, perform transactions, implement security

policies, and connect to a multitude of external resources for tasks such as messaging, naming,

sending emails, and communicating with non-Java applications.

The web profile contains the web-based technologies of Java EE that are commonly used by

web developers, such as Servlets, Java Server Pages, Java Server Faces, CDI, JPA, JAX-RS,

WebSockets, and a limited version of Enterprise Java Beans (EJBs) known as EJB Lite. Many of

these technologies are described in detail throughout this course.

REFERENCES
Further information is available in the Introduction to JBoss EAP chapter of the

Development Guide for Red Hat JBoss EAP 7.0:

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-

application-platform/

34 JB083x-EAP-7.0-en-1-20181001

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/
https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

QUIZ

DESCRIBING AN APPLICATION SERVER

Choose the correct answers to the following questions:

 1. Which of the following statements about Java SE and Java EE applications is true?
a. Java EE applications are hosted and managed by an application server.

b. Java SE applications cannot connect to a database and perform transactions.

c. Java SE applications are always single-threaded. Only Java EE applications are multi-

threaded.

d. Java EE applications cannot perform asynchronous messaging.

e. In Java EE applications, multi-threading and concurrency has to be manually implemented

by the developer.

 2. Which of the following three statements about JBoss EAP are correct? (Choose three.)
a. EAP is based on the Tomcat open source web server.

b. EAP is based on the Wildfly open source application server.

c. All the Java EE APIs are bundled as modular components into EAP 7. All the modules are

enabled by default, and you cannot add or remove any modules.

d. All the Java EE APIs are bundled as modular components into EAP 7. The modules can be

enabled, only when required.

e. In EAP 7, high-availability clustering, messaging, and distributed caching are not available

by default, You have to use third-party products to enable these features.

f. EAP 7 supports both the Java EE 7 web and full profiles.

 3. Which of the following two statements about the EAP 7 architecture are correct?
(Choose two.)
a. The concept of modules applies only to the EAP-provided services. Applications cannot be

run as modules.

b. Both user-developed applications and EAP-provided services can be run as modules.

c. Modules have global visibility scope; that is, all modules can access classes from other

modules in EAP implicitly.

d. EAP has exclusive control over visibility. Classes from other modules have to be explicitly

requested.

JB083x-EAP-7.0-en-1-20181001 35

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

 4. Which of the following statements about containers in an application server is true?
a. There must only be one container in an application server. Multiple containers within a

single application server are not allowed.

b. The containers can only read XML deployment descriptors in deployments. Code-level

annotations are not supported.

c. Application components can declaratively configure security in XML deployment

descriptors or code-level annotations.

d. A web container can deploy EJB, JMS, and JPA components.

e. The EJB container must be run separately, outside of the application server. The

application server only supports running the web container inside it.

 5. Which of the following two statements about the Java EE profiles are correct? (Choose
two.)
a. A profile is a collection of APIs focused on specific application types.

b. The concept of a profile was introduced in Java EE 7.

c. The Java EE 7 specification defines three profiles: web, ejb, and full.

d. The Java EE 7 specification defines four profiles: web, ejb, jms, and full.

e. The Java EE 7 specification defines two profiles: web and full.

 6. Which of the following two statements about the web profile are correct? (Choose two.)
a. The web profile contains all APIs in the full profile as well as other APIs focused on web

technologies.

b. JBoss EAP does not support the web profile.

c. The web profile has support for JMS Message Driven Beans (MDB).

d. EJB Lite is part of the web profile.

e. CDI is part of the web profile.

36 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

SOLUTION

DESCRIBING AN APPLICATION SERVER

Choose the correct answers to the following questions:

 1. Which of the following statements about Java SE and Java EE applications is true?
a. Java EE applications are hosted and managed by an application server.

b. Java SE applications cannot connect to a database and perform transactions.

c. Java SE applications are always single-threaded. Only Java EE applications are multi-

threaded.

d. Java EE applications cannot perform asynchronous messaging.

e. In Java EE applications, multi-threading and concurrency has to be manually implemented

by the developer.

 2. Which of the following three statements about JBoss EAP are correct? (Choose three.)
a. EAP is based on the Tomcat open source web server.

b. EAP is based on the Wildfly open source application server.

c. All the Java EE APIs are bundled as modular components into EAP 7. All the modules are

enabled by default, and you cannot add or remove any modules.

d. All the Java EE APIs are bundled as modular components into EAP 7. The modules can be

enabled, only when required.

e. In EAP 7, high-availability clustering, messaging, and distributed caching are not available

by default, You have to use third-party products to enable these features.

f. EAP 7 supports both the Java EE 7 web and full profiles.

 3. Which of the following two statements about the EAP 7 architecture are correct?
(Choose two.)
a. The concept of modules applies only to the EAP-provided services. Applications cannot be

run as modules.

b. Both user-developed applications and EAP-provided services can be run as modules.

c. Modules have global visibility scope; that is, all modules can access classes from other

modules in EAP implicitly.

d. EAP has exclusive control over visibility. Classes from other modules have to be explicitly

requested.

JB083x-EAP-7.0-en-1-20181001 37

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

 4. Which of the following statements about containers in an application server is true?
a. There must only be one container in an application server. Multiple containers within a

single application server are not allowed.

b. The containers can only read XML deployment descriptors in deployments. Code-level

annotations are not supported.

c. Application components can declaratively configure security in XML deployment

descriptors or code-level annotations.

d. A web container can deploy EJB, JMS, and JPA components.

e. The EJB container must be run separately, outside of the application server. The

application server only supports running the web container inside it.

 5. Which of the following two statements about the Java EE profiles are correct? (Choose
two.)
a. A profile is a collection of APIs focused on specific application types.

b. The concept of a profile was introduced in Java EE 7.

c. The Java EE 7 specification defines three profiles: web, ejb, and full.

d. The Java EE 7 specification defines four profiles: web, ejb, jms, and full.

e. The Java EE 7 specification defines two profiles: web and full.

 6. Which of the following two statements about the web profile are correct? (Choose two.)
a. The web profile contains all APIs in the full profile as well as other APIs focused on web

technologies.

b. JBoss EAP does not support the web profile.

c. The web profile has support for JMS Message Driven Beans (MDB).

d. EJB Lite is part of the web profile.

e. CDI is part of the web profile.

38 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

PACKAGING AND DEPLOYING A JAVA EE
APPLICATION

OBJECTIVE
After completing this section, students should be able to package a simple Java EE application and

deploy it to JBoss EAP using Maven.

PACKAGING AND DEPLOYING JAVA EE APPLICATIONS
Java EE applications can be packaged in different ways for deployment to a compliant application

server. Depending on the application type and the components it contains, applications can be

packaged into different deployment types (compressed archive files containing classes, application

assets, and XML deployment descriptors). The three most common deployment types are:

• JAR files: JAR files can contain Plain Old Java Object (POJO) classes, JPA Entity Beans, utility

Java classes, EJBs, and MDBs. When deployed into an application server, depending on the type

of components inside the JAR file, the application server looks for XML deployment descriptors,

or code-level annotations, and deploys each component accordingly.

Figure 2.3: Sample EJB JAR file structure

• WAR files: A WAR file is used for packaging web applications. It can contain one or more JAR

files, as well as XML deployment descriptor files under the WEB-INF or WEB-INF/classes/
META-INF folders.

JB083x-EAP-7.0-en-1-20181001 39

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

Figure 2.4: Sample WAR file structure

• EAR files: An EAR file contains multiple JAR and WAR files, as well as XML deployment

descriptors in the META-INF folder.

Figure 2.5: Sample EAR file structure

NOTE
XML deployment descriptors, if present, override the code-level annotations. For a

given component, avoid duplicating the configuration in both places.

40 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

PACKAGING AND DEPLOYING JAVA EE APPLICATIONS
TO EAP
Maven provides several useful plug-ins to simplify packaging and deployment to EAP during the

development life cycle.

The maven-war-plugin creates WAR files from your application, provided you have followed the

Maven standard source code layout. The maven-war-plugin can be declared in the <build>
section of your Maven pom.xml file:

<build>

<finalName>todo</finalName>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>
 <version>${version.war.plugin}</version>

 <extensions>false</extensions>

 <configuration>

 <failOnMissingWebXml>false</failOnMissingWebXml>

 </configuration>

 </plugin>

 </plugins>

</build>

Similarly, the maven-ear-plugin creates EAR files from your application source code. It is

declared in the <build> section of your Maven pom.xml file. You need to indicate the WAR files

that should be packaged inside the EAR file with the <webModule> tag:

<build>

<finalName>todo</finalName>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-ear-plugin</artifactId>
 <version>${version.ear.plugin}</version>

 <configuration>

 <version>6</version>

 <defaultLibBundleDir>lib</defaultLibBundleDir>

 <modules>

 <webModule>
 <groupId>com.redhat.training</groupId>
 <artifactId>todojee-web</artifactId>
 <contextRoot>/todo-ear</contextRoot>
 </webModule>
 </modules>

 <fileNameMapping>no-version</fileNameMapping>

 </configuration>

 </plugin>

 </plugins>

</build>

You can use Maven to deploy applications to JBoss EAP using the wildfly-maven-plugin,

which provides features to deploy and undeploy applications to EAP. It supports deploying all three

JB083x-EAP-7.0-en-1-20181001 41

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

types of deployment units: JAR, WAR, and EAR. You can declare the plug-in in your project's Maven

pom.xml file:

<plugin>

 <groupId>org.wildfly.plugins</groupId>

 <artifactId>wildfly-maven-plugin</artifactId>

 <version>${version.wildfly.maven.plugin}</version>

</plugin>

To build, package, and deploy an application to EAP, run the following command from your project

root folder:

$ mvn clean package wildfly:deploy

To undeploy an application from EAP, run the following command from your project root folder:

$ mvn clean wildfly:undeploy

REFERENCES
Further information is available in the Deploying Applications Using Maven chapter

of the Development Guide for Red Hat JBoss EAP 7.0:

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-

application-platform/

42 JB083x-EAP-7.0-en-1-20181001

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/
https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

GUIDED EXERCISE

PACKAGING AND DEPLOYING A JAVA EE
APPLICATION

In this exercise, you will package and deploy a Java EE application to EAP.

OUTCOMES
You should be able to import a simple Java EE web application project into Red Hat

JBoss Developer Studio and package and deploy it to EAP.

BEFORE YOU BEGIN
The source code for the web application is available in a Git repository.

If you have not done so already, open a terminal window on your system and run the

following command to download the lab files required for this course.

$ git clone https://github.com/RedHatTraining/JB083x-lab

The above command creates a directory called JB083x-lab. This directory contains the

source code for all the applications used in this course. There are two subdirectories in this

directory named labs and solutions, which contain the source code for all the labs, and

the corresponding solution files for the labs in this course.

The source code for the web application used in this exercise is in the labs/hello-web
directory.

1. Import the hello-web project into Red Hat JBoss Developer Studio IDE.

1.1. Launch the Red Hat JBoss Developer Studio IDE.

1.2. In the IDE menu, click File → Import to open the Import wizard.

1.3. On the Select page, click Maven → Existing Maven Projects, and then click Next.

1.4. In the Maven projects page, click Browse to open the Select root folder window.

Navigate to the JB083x-lab/labs/hello-web directory, and then click OK.

1.5. On the Maven projects page, click Finish.

1.6. Watch the IDE status bar to monitor the progress of the import operation. It may take

a few minutes to download all the required dependencies.

2. Explore the project's Maven pom.xml file and the parent POM file.

2.1. Expand the hello-web item in the Project Explorer pane on the left and then double-

click the pom.xml file.

The Overview tab is visible in the main editor window, and displays a high-level view

of the project. The Group Id, Artifact Id and the Version (commonly referred

JB083x-EAP-7.0-en-1-20181001 43

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

to as the GAV coordinates of a project or module) of the hello-web project, as well

as its parent, are shown in this tab.

2.2. Click the Dependencies tab to view the project dependencies (the libraries,

frameworks, and modules that this project depends on).

2.3. Click the pom.xml tab to view the full text of the pom.xml file.

Briefly review the GAV coordinates for this project:

<artifactId>hello-web</artifactId>

<packaging>war</packaging>

<name>Hello World web app Project</name>

<description>This is the hello-web project</description>

<parent>

 <groupId>com.redhat.training</groupId>

 <artifactId>parent-pom</artifactId>

 <version>1.0</version>

 <relativePath>../pom.xml</relativePath>

</parent>

...

<build>

 <plugins>

 <plugin>

 <artifactId>maven-war-plugin</artifactId>

 <version>${version.war.plugin}</version>

 ...

 </plugin>

The packaging format is declared as war. Maven ensures that when the

project is built it creates a WAR file that can be deployed to EAP.

This project inherits the declarations and properties from the parent POM file,

which is located in the JB083x-lab/labs folder. The parent POM file declares

many attributes and properties that can be used by multiple child projects

that reference it. It is a Maven best practice to declare repositories, master

dependencies, bill of materials (BOM) declarations, and other attributes that are

used in multiple projects, in order to avoid duplication.

Because this project is a web application built as a WAR file, the Maven WAR

plug-in (maven-war-plugin) is configured.

2.4. Open the JB083x-lab/labs/pom.xml parent POM file using the IDE (click File →

Open File), or in a text editor.

2.5. The parent POM file declares a number of commonly used properties that are used

in all the projects in this course. For example, the file declares that the version of the

JBoss EAP bill of materials (BOM) is 7.0.2.GA, and that all projects will be compiled

with JDK 1.8.

The Wildfly Maven plug-in is also declared in the parent POM file. It is used to deploy

the project WAR file to the running EAP server instance.

44 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

3. Configure an EAP server instance in the IDE.

3.1. Click the Servers tab at the bottom of IDE, below the main editor area.

Figure 2.6: IDE servers tab

3.2. Click No servers are available to define a new EAP server.

3.3. In the Define a New Server window, select the Red Hat JBoss Enterprise

Application Platform 7.0 option and then click Next.

Figure 2.7: Defining a new EAP server

3.4. In the Create a new Server Adapter window, leave the fields at their default values as

shown in the figure below, and then click Next.

JB083x-EAP-7.0-en-1-20181001 45

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

Figure 2.8: New server adapter configuration

3.5. In the JBoss Runtime window, click Browse next to the Home Directory field and

navigate to the folder where you installed JBoss EAP during lab environment set up.

Because you will be running the standalone-full profile, edit the Configuration

file field and change it to standalone-full.xml from the default standalone.xml.

Click Next to continue.

Figure 2.9: JBoss EAP runtime configuration

46 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

3.6. In the Add and Remove window, click Finish.

3.7. You should now see a new server entry called Red Hat JBoss EAP 7.0 added to the

Servers tab of the IDE. Click this entry to expand it.

Figure 2.10: Adding a new JBoss EAP server

JB083x-EAP-7.0-en-1-20181001 47

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

4. Start EAP from within the IDE.

4.1. Right-click Red Hat JBoss EAP 7.0 in the Servers tab and then click Start (the green

"play" icon) to start the newly added EAP instance.

Figure 2.11: Starting a JBoss EAP server

4.2. As EAP starts, it prints messages to the Console tab of the IDE. Verify that no errors

appear in the console.

Figure 2.12: JBoss EAP console log output

48 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

5. Build, package, and deploy the hello-web application.

There are two ways in which you can deploy the web application:

Option 1: Using Maven on the command line.

5.1. Open a new terminal window and run the following commands to compile, package,

and deploy the hello-web application using Maven:

$ cd JB083x-lab/labs/hello-web

$ mvn clean package wildfly:deploy

When you run the above command, you see output similar to the following:

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 24.160 s

[INFO] Finished at: 2016-11-20T01:08:05-05:00

[INFO] Final Memory: 34M/248M

[INFO] --

5.2. Click Console in the IDE, and observe the hello-web application being deployed:

01:08:03,664 INFO [org.jboss.as.server.deployment] (MSC service thread 1-1)

 WFLYSRV0027: Starting deployment of "hello-web.war" (runtime-name: "hello-

web.war")

...output omitted...

01:08:05,624 INFO [org.wildfly.extension.undertow] (ServerService Thread Pool --

 72) WFLYUT0021: Registered web context: /hello-web

JB083x-EAP-7.0-en-1-20181001 49

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

01:08:05,705 INFO [org.jboss.as.server] (management-handler-thread - 1)

 WFLYSRV0010: Deployed "hello-web.war" (runtime-name : "hello-web.war")

5.3. Access the hello-web application using a browser.

Verify that no errors appear in the console when the application is deployed. Use a

web browser to navigate to http://localhost:8080/hello-web to access the hello-web

application.

Figure 2.13: The hello-web application

5.4. Enter John Doe in the Enter your name field and click Submit.

5.5. Verify that the server processes the input and responds with a Hello message, as well

as the current time on the server.

Figure 2.14: The hello-web application response

5.6. Undeploy the application and stop EAP.

In the terminal window where you ran the Maven command to deploy the application,

run the following command to undeploy the application from EAP:

$ mvn clean wildfly:undeploy

When you run the above command, the hello-web.war file is undeployed from

EAP. You see the following output in the EAP Console:

21:00:31,705 INFO [org.wildfly.extension.undertow] (ServerService Thread Pool --

 77) WFLYUT0022: Unregistered web context: /hello-web

 21:00:31,988 INFO [org.jboss.as.server] (management-handler-thread - 13)

 WFLYSRV0009: Undeployed "hello-web.war" (runtime-name: "hello-web.war")

50 JB083x-EAP-7.0-en-1-20181001

http://localhost:8080/hello-web

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

6. You can also deploy the web application from within the IDE, without using the command

line.

Option 2: Using Red Hat JBoss Developer Studio

6.1. Right-click the hello-web project and select Run As → Run on Server.

Figure 2.15: Deploying applications from within the IDE

6.2. In the Run on Server window, ensure that the JBoss EAP 7.0 instance is selected.

Click Next.

JB083x-EAP-7.0-en-1-20181001 51

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

Figure 2.16: Run on Server window

6.3. In the Add and Remove window, ensure that the hello-web application is selected

in the Configured column, and then click Finish.

52 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

Figure 2.17: Deploy hello-web to JBoss EAP

6.4. Click Console in the IDE and observe the application being deployed. When the

deployment is complete the hello-web application launches within the embedded

JB083x-EAP-7.0-en-1-20181001 53

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

browser in the IDE. You can also open an external web browser and test the

application just like you did in the previous step.

Figure 2.18: hello-web application deployed and running

6.5. To undeploy the hello-web application from within the IDE, expand the Red Hat

JBoss EAP 7.0 item in the Servers tab at the bottom of the IDE. Right-click the

hello-web entry, and select Remove to undeploy the application.

7. Right-click the hello-web project in the Project Explorer pane, and select Close Project to

close this project.

8. Right-click Red Hat JBoss EAP 7.0 in the Servers tab and then click Stop to stop the EAP

instance.

This concludes the guided exercise.

54 JB083x-EAP-7.0-en-1-20181001

CHAPTER 2 | Packaging and Deploying Applications to an Application Server

SUMMARY

In this chapter, you learned:

• An application server provides the necessary runtime environment and infrastructure to host and

manage Java EE enterprise applications.

• Red Hat JBoss EAP 7 is a Java EE 7 compliant application server that provides a reliable, high-

performance, light-weight, and supported infrastructure for deploying Java EE applications.

• A profile in the context of a Java EE application server is a set of related APIs that target a

specific application type. The Java EE 7 specification defines two profiles: web and full. JBoss

EAP fully supports both profiles.

• Java EE applications are packaged and deployed in different formats. The three most common

are: JAR, WAR, and EAR files.

• Maven deploys applications to JBoss EAP using the Wildfly Maven plug-in, which provides

features to deploy and undeploy applications to EAP. It supports deploying all three types of

deployment units: JAR, WAR, and EAR.

JB083x-EAP-7.0-en-1-20181001 55

56 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3

CREATING ENTERPRISE JAVA
BEANS

GOAL Create Enterprise Java Beans.

OBJECTIVES • Convert a POJO to an EJB.

SECTIONS • Converting a POJO to an EJB (and Guided
Exercise)

JB083x-EAP-7.0-en-1-20181001 57

CHAPTER 3 | Creating Enterprise Java Beans

CONVERTING A POJO TO AN EJB

OBJECTIVE
After completing this section, students should be able to convert a Plain Old Java Object (POJO) to

an EJB.

DESCRIBING ENTERPRISE JAVA BEANS (EJB)
An Enterprise Java Bean (EJB) is a Java EE component typically used to encapsulate business

logic in an enterprise application. Unlike simple Java beans in Java SE, where concepts such as

multi-threading, concurrency, transactions, and security have to be explicitly implemented by the

developer, in an EJB, the application server provides these features at runtime and enables the

developer to focus on writing the business logic for the application.

Using EJBs to model the business logic of an enterprise application has several advantages:

• EJBs provide low-level system services, such as multi-threading and concurrency, without

requiring the developer to write code explicitly for these services. This is important for

enterprise applications with a large number of users accessing the application concurrently.

• The business logic is encapsulated into a portable component that can be distributed across

many machines in a way that is transparent to clients and enables you to load balance requests

when a large number of clients access the application concurrently.

• Client code is simplified because the client can focus on just the user-interface aspects without

mixing business logic. For example, consider how the To Do List Java SE application combines

both user-interface code and the core logic for list management in the same process and often in

the same class.

• EJBs provide transactional capabilities to enterprise applications, where a number of users

concurrently access the application and the application server ensures data integrity with the

use of transactions.

• EJB components can be secured for access on a group or role basis. The application server

provides an API for authentication and authorization services, without requiring the developer to

write code explicitly.

• EJBs can be accessed by multiple different types of clients, ranging from stand-alone remote

clients, other Java EE components, or web service clients using standard protocols like SOAP or

REST.

REVIEWING THE TYPES OF EJB
The Java EE specification defines two different types of EJBs:

• Session: Performs an operation when called from a client. Usually an application's core business

logic is exposed as a high-level API (Session Facade pattern) that can be distributed and can be

accessed over a number of protocols (RMI, JNDI, web services).

• Message Driven Bean (MDB): Used for asynchronous communication between components

in a Java EE application and can be used to receive Java Messaging Service (JMS) compatible

messages and take some action based on the content of the received messages.

58 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3 | Creating Enterprise Java Beans

DESCRIBING SESSION BEANS
A Session Bean provides an interface to clients and encapsulates business logic methods that can

be invoked by multiple clients either locally or remotely over different protocols. Session EJBs can

be clustered and deployed across multiple machines in a client transparent manner. The Java EE

standard does not formally define the low-level details of how EJBs should be clustered. Each

application server provides its own mechanisms for clustering and high availability. A session

bean's interface usually exposes a high-level API encapsulating the core business logic of the

application.

There are three different types of session beans, depending on the application use case, that can

be deployed on a Java EE compatible application server:

Stateless Session Beans (SLSB)
A stateless session bean does not maintain conversational state with clients between calls. When

clients interact with the stateless session bean and invoke methods on it, the application server

allocates an instance from a pool of stateless session beans, which are pre-instantiated. Once a

client completes the invocation and disconnects, the bean instance is either released back into the

pool or destroyed.

A stateless session bean is useful in scenarios where the application has to serve a large number of

clients concurrently accessing the bean's business methods. They typically can scale better than

stateful session beans since the application server does not have to maintain state and the beans

can be distributed across multiple machines in a large deployment.

Note that when working with stateless EJBs, you must be careful not to define stateful data

elements and constructs that need to be shared between multiple clients (for example, map-like

data structures holding a cache). These types of use cases would be more appropriately solved by

using a stateful session bean or a singleton session bean.

A stateless session bean is also the preferred option for exposing SOAP or REST service end-points

to web services clients. Simple annotations are added to the bean class and methods to achieve

this functionality without writing boilerplate code for web service communication.

Stateful Session Beans (SFSB)
In contrast to stateless session beans, stateful session beans maintain conversational state with

clients across multiple calls. There is a one-to-one relationship between the number of stateful

bean instances and the number of clients. When a client completes the interaction with the bean

and disconnects, the bean instance is destroyed. A new client results in a new stateful bean with its

own unique state. The application server ensures that each client receives the same instance of a

stateful session bean for each method call.

Stateful session beans are used in scenarios where conversational state has to be maintained with

a client for the duration of the interaction. For example, a shopping cart bean tracks the number

of items that a customer adds to their cart in an e-commerce application. Each customer's cart is

encapsulated in the state of the bean and the state is updated as and when the customer adds,

updates, or removes shopping items.

When a developer builds a stateful EJB, any class level attributes must be scoped as private
and getter and setter methods are created to provide access to these attributes. This is a common

pattern used in Java development but is also automatically incorporated when working with EJBs

backing JSF (Java Server Faces) pages. When using expression language (EL) in the JSF source

code to map form fields to EJB attributes, the EJB attributes are automatically accessed via

getters and setters without explicitly using the method name.

An example of a stateful session bean is shown below with its getter and setter methods:

JB083x-EAP-7.0-en-1-20181001 59

CHAPTER 3 | Creating Enterprise Java Beans

@Stateful

@Named("hello")

public class Hello {

 private String name;

 @Inject

 private PersonService personService;

 public void sayHello() throws IllegalStateException, SecurityException,

 SystemException {

 String response = personService.hello(name);

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(response));

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

Singleton Session Beans
Singleton session beans are session beans that are instantiated once per application and exists for

the lifecycle of the application. Every client request for a singleton bean goes to the same instance.

Singleton session beans are used in scenarios where a single enterprise bean instance is shared

across multiple clients.

Unlike stateless session beans, which are pooled by the application server, there is only a single

instance of a singleton session bean in memory. Similar to stateless session beans, singleton

session beans can also be used for implementing web service endpoints. A developer can provide

annotations to indicate that the bean must be initialized by the application server at startup

as a performance optimization (for example, database connections, JNDI lookups, JMS remote

connection factory creation, and many more).

MESSAGE DRIVEN BEANS
A Message Driven Bean (MDB) enables Java EE applications to process messages asynchronously.

Once deployed on an application server, it listens for JMS messages and for each message

received, it performs an action (the onMessage() method of the MDB is invoked). MDBs provide

an event driven loosely coupled model for application development. The MDBs are not injected into

or invoked from client code but are triggered by the receipt of messages.

The MDB is stateless and does not maintain any conversational state with clients. The application

server maintains a pool of MDBs and manages their lifecycle by assigning and returning instances

from and to the pool. They can also participate in transactions and the application server takes

care of message redelivery and message receipt acknowledgment based on the outcome of the

message processing.

There are numerous use cases where MDBs can be used. The most popular is for decoupling

systems and preventing their APIs from being too tightly coupled by direct invocation. Instead, two

60 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3 | Creating Enterprise Java Beans

systems can communicate by passing messages in an asynchronous manner, which ensures that

the two systems can independently evolve without impacting each other.

GENERATING AN EJB AUTOMATICALLY USING
RED HAT JBOSS DEVELOPER STUDIO
There are a number of templates provided by JBDS that can be leveraged to automatically

generate code. Using a template, it is possible to leverage JBDS to generate the shell of an EJB

automatically. To accomplish this, the following steps must be followed:

1. In Project Explorer pane on the left side of JBDS, select the project you want to add an EJB

class to, then right-click on the project name. Select New and then scroll to the bottom and

select Other.

2. Once the search pane opens, navigate to EJB and choose Session Bean (EJB 3.x).

Figure 3.1: Create a new EJB in JBDS

3. Provide the package name, as well as the class name for the EJB class. Also, specify the state,

then click Next.

JB083x-EAP-7.0-en-1-20181001 61

CHAPTER 3 | Creating Enterprise Java Beans

Figure 3.2: Name the new EJB Java class in JBDS and set its state

4. Optionally, specify an alternative name to be used when injecting this EJB, as well as the

transaction type for the EJB, and then click Finish.

62 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3 | Creating Enterprise Java Beans

Figure 3.3: Provide a name for the EJB and setting its transaction type

5. The new EJB class opens in the editor window.

Figure 3.4: The new EJB class, automatically created.

CONVERTING A POJO TO AN EJB
Converting a POJO to an EJB is a simple process of annotating the POJO with one or more

annotations defined in the Java EE standard and running the resultant EJB in the context of an

application server. Take the case of a To Do List application POJO:

public class TodoBean {

 public void addTodo(TodoItem item) {

 ...

JB083x-EAP-7.0-en-1-20181001 63

CHAPTER 3 | Creating Enterprise Java Beans

 }

 public void findTodo(int id) {

 ...

 }

 public void updateTodo(TodoItem item) {

 ...

 }

 public void deleteTodo(int id) {

 ...

 }

}

The POJO has four business methods to add, find, update, and delete to do items. To convert this

POJO to a stateless session EJB is as simple as adding an @Stateless annotation to the POJO.

@Stateless
public class TodoBean {

...

}

To convert this POJO to a stateful session bean, add the @Stateful annotation:

@Stateful
public class TodoBean {

...

}

In both the above cases, the application server automatically ensures that the methods in the

EJB execute in a transactional context. You can further annotate the EJB with security-related

annotations and expose the EJB as a web service end-point by adding web services annotations

from the Java EE standard.

To convert this POJO to a singleton session bean, add the @Singleton annotation:

@Singleton
public class TodoBean {

...

}

In scenarios where you want a singleton bean to perform some initialization before starting to

service client requests, you can add the @Startup annotation to the singleton class to tell the EJB

container this class is required during the application initialization sequence and should be created

first, before any other EJBs are instantiated. It is important to note that the application will fail to

start if any EJB marked with @Startup throws an exception during initialization.

It is also possible to annotate an initialization method with the @PostConstruct annotation,

which tells the EJB container to call that method immediately after instantiating the EJB.

The following example shows an EJB that is initialized for application startup and uses the init()
method to setup its initial state:

64 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3 | Creating Enterprise Java Beans

@Singleton
@Startup
public class TodoBean {

 @PostConstruct
 public void init() {

 // do some initialization

 }

...

}

Another important distinction between POJOs and EJBs is that, because EJBs are instantiated by

the EJB container, they cannot use a constructor that relies on arguments. This is because the EJB

container cannot appropriately set these arguments when instantiating an instance of the EJB.

For this reason, if you are working on converting a POJO class that currently uses a constructor

with arguments into an EJB, you need to find a way to provide equivalent logic in an argument-

free constructor. If no constructor is provided for an EJB class, the EJB container uses the default

no-argument constructor provided by the JVM. If an EJB class provides only a constructor with

arguments, an error is raised by the container during application deployment.

DEMONSTRATION: CONVERTING A POJO TO AN EJB
REFERENCES
Further information is available in the Session Beans chapter and the Message

Driven Beans (MDB) chapter of the Development Guide for Red Hat JBoss EAP:

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-

application-platform/7.0/

JB083x-EAP-7.0-en-1-20181001 65

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/
https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/

CHAPTER 3 | Creating Enterprise Java Beans

GUIDED EXERCISE

CREATING A STATELESS EJB

In this exercise, you will create and invoke a stateless EJB, and display the output on a web

page.

OUTCOMES
You should be able to implement a stateless EJB that can be invoked from a JSF managed

bean.

BEFORE YOU BEGIN
The source code for the application is available in a Git repository.

If you have not done so already, open a terminal window on your system, and run the

following command to download the lab files required for this course.

$ git clone https://github.com/RedHatTraining/JB083x-lab

The above command creates a directory called JB083x-lab. This directory contains the

source code for all the applications used in this course. There are two subdirectories in this

directory named labs and solutions, which contain the source code for all the labs, and

the corresponding solution files for the labs in this course.

The source code for the application used in this exercise is in the labs/stateless-ejb
directory. The complete solution for this exercise is in the solutions/stateless-ejb
directory.

1. Open Red Hat JBoss Developer Studio (JBDS) and import the Maven project.

1.1. Launch the Red Hat JBoss Developer Studio IDE.

1.2. In the JBDS menu, click File → Import to open the Import wizard.

1.3. On the Select page, click Maven → Existing Maven Projects, and then click Next.

1.4. In the Maven projects page, click Browse to open the Select root folder window.

Navigate to the JB083x-labs/labs/stateless-ejb directory, and then click

OK.

1.5. On the Maven projects page, click Finish.

1.6. Watch the JBDS status bar to monitor the progress of the import operation. It may

take a few minutes to download all the required dependencies.

66 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3 | Creating Enterprise Java Beans

2. Explore the project's pom.xml file by expanding the stateless-ejb item in the Project

Explorer tab in the left pane of JBDS, and double-clicking the pom.xml file.

2.1. Click the Overview tab in the main editor window. This tab shows a high-level view

of the project, and any changes made to this window are applied to the appropriate

section of the pom.xml file.

2.2. Click the Dependencies tab to view the project dependencies (the libraries,

frameworks and modules that this project depends on).

2.3. Click the pom.xml tab to view the full text of the pom.xml file.

Observe that the EJB API is declared as a dependency with scope as provided.

This is because JBoss EAP implements the complete Java EE profile, and therefore

provides the necessary EJB libraries at runtime.

<dependency>

 <groupId>org.jboss.spec.javax.ejb</groupId>

 <artifactId>jboss-ejb-api_3.2_spec</artifactId>

 <scope>provided</scope>

</dependency>

This also signals Maven not to package these libraries into the final WAR file.

3. Explore the application source code.

3.1. Review the JSF page that calls the EJB by expanding the stateless-ejb item in the

Project Explorer tab in the left pane of JBDS. Further expand the stateless-ejb →

src → main → webapp folders and double-click the index.xhtml file.

<h:form id="form">

 <p class="input">

 <h:outputLabel value="Enter your name:" for="name" />

 <h:inputText value="#{hello.name}" id="name" required="true"

 requiredMessage="Name is required"/>

 </p>

 <br class="clear"/>

 <br class="clear"/>

 <p class="input">

 <h:commandButton action="#{hello.sayHello()}" value="Submit" styleClass="btn" /

>

 </p>

 <br class="clear"/>

 <br class="clear"/>

 <h:messages styleClass="messages"/>

JB083x-EAP-7.0-en-1-20181001 67

CHAPTER 3 | Creating Enterprise Java Beans

</h:form>

The Expression Language (EL) value #{hello.sayHello()} is .invoked when you

submit the web form.

NOTE
To view the actual source of the index.xhtml file, click the Source tab.

3.2. Explore the Hello.java file.

In the expanded stateless-ejb item in the Project Explorer tab in the left

pane of JBDS, select stateless-ejb → Java Resources → src/main/java →

com.redhat.training.ui and expand it. Double-click the Hello.java file.

Observe that the stateless EJB is injected using the @EJB annotation.

@EJB

private HelloBean helloEJB;

3.3. Explore the HelloBean.java Java file.

In the expanded stateless-ejb item in the Project Explorer tab in the left

pane of JBDS, select stateless-ejb → Java Resources → src/main/java →

com.redhat.training.ejb and expand it. Double-click the HelloBean.java file.

public class HelloBean {

 public String sayHello(String name) {

 // respond back with Hello, {name}.

 return "Hello, " + name;

 }

}

This bean defines the public method sayHello, which echoes back a string that is

sent as input.

4. Start EAP.

Select the Servers tab in the bottom pane of JBDS. The JBoss EAP server should have been

added in a previous lab. Right-click the server Red Hat JBoss EAP 7.0 [Stopped] and click

the green "start" button to start the server. Watch the Console until the server starts and

you see the following message:

INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: JBoss EAP 7.0.0.GA

 (WildFly Core 2.1.2.Final-redhat-1) started

5. Run the JUnit test and inspect the result.

5.1. Review the test class EJBTest.java.

In the expanded stateless-ejb item in the Project Explorer tab in the left

pane of JBDS, select stateless-ejb → Java Resources → src/test/java →

com.redhat.training.ejb and double-click the EJBTest.java file.

...

@RunWith(Arquillian.class)

68 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3 | Creating Enterprise Java Beans

public class EJBTest {

 @Inject

 private Hello hello;

 @Deployment

 public static WebArchive createDeployment() {

 return ShrinkWrap.create(WebArchive.class,"stateless-ejb-

test.war").addClass(HelloBean.class).addClass(Hello.class)

 .addAsManifestResource(EmptyAsset.INSTANCE,

 ArchivePaths.create("beans.xml"));

 }

 @Test

 public void testHelloEJB() {

 hello.setName("John Doe");

 String result = hello.greet();

 assertEquals("Hello, John Doe", result);

 }

}

...output omitted...

The test class is annotated with @RunWith(Arquillian.class) to ensure that

Arquillian Runner is used by JBDS to deploy the application to the server for testing.

The Hello backing bean is injected with the following lines:

@Inject

private Hello hello;

5.2. Right-click the file name EJBTest.java on the left pane, click the Run As option and

select JUnit Test to run the test method.

5.3. Expand the JUnit pane by double-clicking the JUnit tab.

Notice that the test failed due to a NameNotFoundException.

A NameNotFoundException is raised because the EJB class was never

instantiated. To fix this, the HelloBean class needs to be annotated with a

@Stateless annotation to make the class an EJB so that it can be injected and

instantiated.

6. Update HelloBean to be a stateless EJB.

6.1. Update HelloBean with the @Stateless annotation:

import javax.ejb.Stateless;

@Stateless

public class HelloBean {

 public String sayHello(String name) {

 // respond back with Hello, {name}.

 return "Hello, " + name;

 }

}

6.2. Press Ctrl+S to save the changes.

JB083x-EAP-7.0-en-1-20181001 69

CHAPTER 3 | Creating Enterprise Java Beans

7. Rerun the unit test and ensure that the tests pass.

7.1. To rerun the test, right-click the file name EJBTest.java on the left pane, click the Run

As option and select JUnit Test.

7.2. Observe the server Console in JBDS. The following messages confirm JNDI bindings

in EAP for the stateless session EJB.

INFO [org.jboss.as.ejb3.deployment] (MSC service thread 1-3) WFLYEJB0473: JNDI

 bindings for session bean named 'HelloBean' in deployment unit 'deployment

 "test.war"' are as follows:

 java:global/test/HelloBean!com.redhat.training.ejb.HelloBean

 java:app/test/HelloBean!com.redhat.training.ejb.HelloBean

 java:module/HelloBean!com.redhat.training.ejb.HelloBean

 java:global/test/HelloBean

 java:app/test/HelloBean

 java:module/HelloBean

7.3. Observe the test result in the JUnit Test tab in JBDS.

This time the test is successful.

Figure 3.5: JUnit test success

8. Deploy the application to JBoss EAP using Maven by running the following commands:

$ cd JB083x-lab/labs/stateless-ejb

$ mvn clean wildfly:deploy

When the deployment is complete, you should see BUILD SUCCESS as shown in the

following example:

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 17.116 s

[INFO] Finished at: 2016-12-01T07:26:55-05:00

[INFO] Final Memory: 35M/210M

[INFO] --

Also validate the deployment in the server log shown in the Console tab in JBDS. The

following should be in the log when the application is deployed successfully:

INFO [org.jboss.as.server] (management-handler-thread - 9) WFLYSRV0010: Deployed

 "stateless-ejb.war" (runtime-name : "stateless-ejb.war")

70 JB083x-EAP-7.0-en-1-20181001

CHAPTER 3 | Creating Enterprise Java Beans

9. Test the application in a browser.

9.1. Open the following URL in a browser: http://localhost:8080/stateless-
ejb.

Figure 3.6: Application home page

9.2. Enter Shadowman in the text box labeled Enter your name: and click Submit.

The page updates with the message Hello Shadowman:

Figure 3.7: Application response

10. Undeploy the application and stop EAP.

10.1. Run the following command to undeploy the application:

$ mvn clean wildfly:undeploy

10.2. Right-click the stateless-ejb project in the Project Explorer, and select Close

Project to close this project.

10.3. Right-click the Red Hat JBoss EAP 7.0 server in the JBDS Servers tab and click Stop.

This concludes the guided exercise.

JB083x-EAP-7.0-en-1-20181001 71

CHAPTER 3 | Creating Enterprise Java Beans

SUMMARY

In this chapter, you learned:

• An Enterprise Java Bean (EJB) is a portable Java EE component that is typically used to

encapsulate business logic in an enterprise application. It runs on an application server and can

be consumed by remote clients as well as other Java EE components running locally in the same

JVM process.

• An EJB provides multi-threading, concurrency, transactions, and security for enterprise

applications without requiring the developer to write code for these features explicitly.

Furthermore, the developer can declaratively add annotations to the EJB to expose the business

methods as web service end-points.

• There are two different types of EJB: Session Beans and Message Driven Beans (MDB). Session

beans can be of three types: Stateless Session Beans (SLSB), Stateful Session Beans (SFSB) and,

Singleton Session Beans.

• A Message Driven Bean (MDB) enables Java EE applications to process messages

asynchronously. An MDB listens for JMS messages. For each message received, it performs an

action. MDBs provide an event driven, loosely coupled model for application development.

72 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4

MANAGING PERSISTENCE

GOAL Create Persistence Entities with validations.

OBJECTIVES • Describe the Persistence API.

• Persist data to a data store using entities.

• Create a query using the
Java Persistence Query Language.

SECTIONS • Describing the Persistence API (and Quiz)

• Persisting Data (and Guided Exercise)

• Creating Queries (and Guided Exercise)

JB083x-EAP-7.0-en-1-20181001 73

CHAPTER 4 | Managing Persistence

DESCRIBING THE PERSISTENCE API

OBJECTIVES
After completing this section, students should be able to:

• Understand object relational mapping concepts.

• Describe entity class and annotations.

• Describe how to use EntityManager in an EJB.

• Describe a persistence context XML descriptor.

OBJECT RELATIONAL MAPPING
When an application stores data in a permanent store like a flat file, XML file, or a database for

durability, it is known as persistence. Relational databases are one of the most common data stores

an enterprise application uses to preserve data for reuse.

Business data in a Java EE enterprise application is defined as Java objects. These objects are

preserved in corresponding database tables. Java objects and database tables use different data

types, such as a String in Java and Varchar in a database, to store business data. As data moves

between the application and the database as a result of write operations, it can cause differences

between the object model and the relational model. This discrepancy is known as an impedance

mismatch, and application developers must write code to account for it if the mismatch is not

already handled by the persistence provider.

Figure 4.1: Impedance mismatch

The technique to automate bridging the impedance mismatch is known as Object Relational

Mapping (ORM). ORM software uses metadata to describe mapping between the classes defined in

an application and the schema of a database table. Mapping is provided in XML configuration files

or annotations.

For example, you want to store TodoItem class objects in the TodoItem database table; ORM

maps the Java class name to a database table name and the attributes in the class are mapped to

the corresponding fields in the table automatically.

74 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

Figure 4.2: Object-relational mapping

Java EE provides the Java Persistence API (JSR 338) specification that is implemented by

various ORM providers. There are many ORM software offerings available in the market, such as

EclipseLink and Hibernate. A fully implemented ORM provides optimization techniques, caching,

database portability, query language in addition to object persistence. The three key concepts

related to the Java Persistence API are entities, persistence units, and persistence context.

ENTITY CLASS AND ANNOTATIONS
An entity is a lightweight domain object that is persist-able. An entity class is mapped to a table

in a relational database. Each instance of an entity class has a primary key field. The primary key

field is used to map an entity instance to a row in a database table. All non-transient attributes

map to fields in a database table. In a database table, each persisted instance of an entity has a

persistence identity that uniquely identifies it in a table. In Java, an entity is a Plain Old Java Object

(POJO) class that is annotated with @Entity annotation. All the fields in an entity class are stored

in the database by default and are known as persistent fields. The attributes that are declared as

transient are not stored in a database table and are known as non-persistent.

Declaring Entity Class
An entity class is declared as follows:

import javax.persistence.*;

import java.io.*;

@Entity

public class TodoItem implements Serializable {

 @Id

 private int id; //primary key -- required for an Entity class

 private String item;

 private String status;

 public TodoItem(){ } //No argument constructor

 // other constructor

 public TodoItem(String item,String status) {

 this.item=item;

 this.status=status;

 }

 //Setter and Getter methods

 public String getItem() {

 return item;

 }

 public void setItem(String item) {

 this.item = item;

JB083x-EAP-7.0-en-1-20181001 75

CHAPTER 4 | Managing Persistence

 }

 public String getStatus() {

 return status;

 }

 public void setStatus(String status) {

 this.status = status;

 }

 }

The default relationship between an entity class and a database table is:

Default Entity to Table Mapping

ENTITY TABLE

Entity class Table name

Attributes of entity class Columns in a database table

Entity instance Record or row in a database table

Using JPA Annotations
Annotations are used to decorate the Java classes, fields, and methods with metadata for mapping,

configuration, queries, validation, and so on, that are compiled and made available at runtime. Here

are some commonly used annotations:

@Entity
The @Entity annotation specifies that a class is an entity. A Java class can be configured as an

entity class without using an @Entity annotation by mapping it in the orm.xml configuration file.

The orm.xml contains all configuration details required to declare a Java class as an entity.

@Table
The @Table annotation is used to specify mapping between an entity class and a table. It is used

when the name of an entity class is different from the name of a table in the database.

@Entity

@Table(name="ThingsToDo")

public class TodoItem {

 ...

}

The TodoItem entity class is mapped to the ThingsToDo table.

@Column
The @Column annotation is used to map a field or property to a column in the database.

@Entity

@Table(name="ThingsToDo")

public class TodoItems implements Serializable {

 @Column(name="itemname")

 private String item;

76 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

 ...

An item attribute is mapped to the column itemname in the table.

@Temporal
The @Temporal annotation is used with a Date type of attribute. Database stores a date in a

different way than Java classes. Temporal annotation manages mapping for a java.util.Date
or java.util.Calendar type and converts it to an appropriate date type in the database.

@Entity

public class TodoItem implements Serializable {

 ...

 @Temporal(TemporalType.DATE)

 private Date completionDate;

@Transient
Transient annotation is used to specify a non-persistent field.

@Entity

public class TodoItem implements Serializable {

 ...

 @Transient

 private int countPending;

The countPending field is not saved to the database table.

@Id
The @Id annotation is used to specify the primary key. The id field is used to identify a unique row

in the database table.

@Entity

public class TodoItem implements Serializable {

 @Id

 private int id;

 ...

}

A primary key can be a simple Java type or a composite value, consisting of multiple fields. For a

composite primary key, a primary key class is defined. @EmbeddedId or @IdClass annotation is

used to specify the composite primary key.

REFERENCES
Further information about configuring composite keys is available in the Public API

for Red Hat JBoss EAP 7, found at

https://developers.redhat.com/apidocs/eap/7.0.0/

JB083x-EAP-7.0-en-1-20181001 77

https://developers.redhat.com/apidocs/eap/7.0.0/

CHAPTER 4 | Managing Persistence

ID GENERATION
Every entity instance is mapped to a row in a database table. Each row in a table is unique and is

identified by a unique ID known as a persistent entity identity. The persistent entity identity is

generated from the primary key field. A primary key field is required in every entity class. A simple

primary key should be one of the following types:

• Java primitive types: byte, short, int, long, or char

• The java.lang.String type

• Java Wrapper classes for primitive types: Byte, Short, Integer, Long, or Character

• Temporal types: java.util.Date, or java.sql.Date

@Id annotation is used to specify a simple primary key. @GeneratedValue annotation is

applied to the primary key field or property to specify the primary key generation strategy.

@GeneratedValue annotation provides a GenerationType element of the enum type. The four

primary key generation strategies are as follows:

GenerationType.AUTO
The AUTO strategy is the default ID generation strategy and means that the JPA provider uses any

strategy of its choice to generate the primary key. Hibernate selects the generation strategy based

on the database specific dialect.

@Entity

public class TodoItem implements Serializable {

 @Id

 @GeneratedValue(GenerationType.AUTO)

 private int id;

 ...

}

GenerationType.SEQUENCE
The SEQUENCE strategy means that the JPA provider uses the database sequence to generate the

primary key. The sequence must be created in the database, and the sequence name is provided in

the generator element.

/* ITEMS_SEQ sequence

create sequence ITEMS_SEQ

MINVALUE 1

START WITH 1

INCREMENT BY 1

*/

@Entity

public class TodoItem implements Serializable {

 @Id

 @GeneratedValue(GenerationType.SEQUENCE, generator="ITEMS_SEQ"))

 private int id;

 ...

}

78 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

GenerationType.IDENTITY
The IDENTITY strategy means that the JPA provider uses the database identity column to

generate the primary key.

@Entity

public class TodoItem {

 @Id

 @GeneratedValue(GenerationType.IDENTITY)

 private int id;

 ...

 }

GenerationType.TABLE
The TABLE strategy means that the JPA provider uses database ID generation table. This is a

separate table that is used to generate the ID value. The ID generation table has two columns. The

first column is a string that identifies the generator sequence, and the second column is an integer

value that stores the ID sequence.

@Entity

public class TodoItem implements Serializable {

 @TableGenerator(name="Items_gen",

 table="ITEM_ID_GEN",

 pkColumnName="GEN_NAME",

 valueColumnName="GEN_VAL",

 pkColumnValue="ITEM_ID",

 allocationSize=60)

 @Id

 @GeneratedValue(Generator="Items_gen")

 private int id;

 ...

}

DESCRIBING ENTITY MANAGER
The EntityManager API is defined to perform persistence operations. An entity manager

obtains the reference to an entity and performs the actual CRUD (Create, Read, Update, and

Delete) operations on the database. An EntityManager instance can be obtained from an

EntityManagerFactory object. An entity manager works within a set of managed entity

instances. These managed entity instances are known as the entity manager's persistence context.

You can think of a persistence context as a unique instance of a persistence unit. A persistence unit

is a collection of all entity classes and a persistence.xml file stored in an application archive.

The persistence.xml is a configuration file that contains information about the entity classes,

data source, transaction type, and other configuration information.

Creating Entity Manager in EJB
An EntityManagerFactory object is created for the persistence unit, and this object is used to

obtain an instance of EntityManager.

@Stateless

public class ItemService {

 //ItemPU is the name of the persistence unit

JB083x-EAP-7.0-en-1-20181001 79

CHAPTER 4 | Managing Persistence

 EntityManagerFactory emFactory =

 Persistence.createEntityManagerFactory("ItemPU");

 EntityManager em = emFactory.createEntityManager();

}

Another way to obtain an EntityManager instance in Java EE managed objects, such as an EJB,

is the producer technique. An object can be injected using Context Dependency Injection (CDI).

CDI is a set of component management services that allow type-safe dependency injection. CDI is

discussed in greater detail later in this course. A producer class defines a producer method that

returns the data type that is injected to another class.

public class EMProducer {

 @Produces

 @PersistenceContext(unitName= "ItemPU")

 private EntityManager em;

}

An EJB class can inject the EntityManager using @Inject annotation.

@Stateless

public class ItemService{

 @Inject

 private EntityManager em;

 public void registerItem(Item item) throws Exception {

 ...

 em.persist(item);

 }

 public void removeItem(Long id) throws Exception {

 ...

 em.remove(findById(id));

 }

 public void updateItem(Item item) {

 em.merge(item);

 }

}

DESCRIBING PERSISTENCE UNIT
A Persistence unit describes configuration settings related to a data source, transactions, concrete

classes, and object-relational mapping. A Persistence unit is configured in a persistence.xml
file in the application's META-INF directory. Every application that uses persistence has at least

one persistence unit. A Persistence unit contains information about the persistence unit name,

data source, and transactions type. The persistence.xml file is discussed more in the next

section.

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1"

 xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

80 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">

 <persistence-unit name="Items" transaction-type="JTA">

 <jta-data-source>java:jboss/datasources/MySQLDS</jta-data-source>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.MySQLDialect" /

>

 <property name="hibernate.hbm2ddl.auto" value="update" />

 <property name="hibernate.show_sql" value="true" />

 <property name="hibernate.format_sql" value="true" />

 </properties>

 </persistence-unit>

</persistence>

REFERENCES
Java Persistence JSR
https://www.jcp.org/en/jsr/detail?id=338

REFERENCES
Further information is available in the Development Guide for Java Persistence API for

Red Hat JBoss EAP 7, found at

https://docs.jboss.org/author/display/AS7/JPA+Reference+Guide/

JB083x-EAP-7.0-en-1-20181001 81

https://www.jcp.org/en/jsr/detail?id=338
https://docs.jboss.org/author/display/AS7/JPA+Reference+Guide/

CHAPTER 4 | Managing Persistence

QUIZ

DESCRIBING THE PERSISTENCE API

Choose the correct answer(s) to the following questions:

 1. Which of the following annotations is required to convert a Java SE class to an entity
class?
a. @Table

b. @Produces

c. @Entity

d. @EntityManager

 2. Which of the following properties are not defined in the persistence.xml file?
a. Persistence-unit name

b. Transaction Type

c. Datasource URL

d. Database provider

e. Provider specific parameters

 3. Which of the following two statements are correct about the entity manager? (Choose
two.)
a. Entity manager objects are mapped to the rows in a database table.

b. An entity manager performs actual Create, Read, Update and Delete (CRUD) operations on

an entity.

c. An entity manager has a persistence context associated with it.

d. An entity manager can produce a collection of EntityManagerFactory objects.

 4. Which ID generation strategy uses a database column to generate the ID?
a. SEQUENCE_GENERATOR

b. TABLE

c. SEQUENCE

d. IDENTITY

82 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

SOLUTION

DESCRIBING THE PERSISTENCE API

Choose the correct answer(s) to the following questions:

 1. Which of the following annotations is required to convert a Java SE class to an entity
class?
a. @Table

b. @Produces

c. @Entity

d. @EntityManager

 2. Which of the following properties are not defined in the persistence.xml file?
a. Persistence-unit name

b. Transaction Type

c. Datasource URL

d. Database provider

e. Provider specific parameters

 3. Which of the following two statements are correct about the entity manager? (Choose
two.)
a. Entity manager objects are mapped to the rows in a database table.

b. An entity manager performs actual Create, Read, Update and Delete (CRUD) operations on

an entity.

c. An entity manager has a persistence context associated with it.

d. An entity manager can produce a collection of EntityManagerFactory objects.

 4. Which ID generation strategy uses a database column to generate the ID?
a. SEQUENCE_GENERATOR

b. TABLE

c. SEQUENCE

d. IDENTITY

JB083x-EAP-7.0-en-1-20181001 83

CHAPTER 4 | Managing Persistence

PERSISTING DATA

OBJECTIVES
After completing this section, students should be able to:

• Describe requirements for entity classes.

• Describe entity fields and properties.

• Describe the EntityManager interface and key methods.

CREATING AN ENTITY CLASS
An entity class is similar to a standard POJO class, but an entity has several important distinctions

that require management by the EntityManager. To convert a POJO class to an entity, prepend

an @Entity annotation in the class header. In addition, each instance variable should be accessed

through the use of getter and setter methods. Finally, the class must at least have one constructor

that has no arguments, although the class can still have other constructors that take arguments.

The following is an example of an entity class:

@Entity

public abstract class Customer {

 @Id

 private int custId;

 private String custName;

 public Customer(){ } // No argument constructor

 //setter and getter methods

 public String getCustName() {

 return custName;

 }

 public void setCustName(String custName) {

 this.custName = custName;

 }

 ...

}

ENTITY FIELDS AND PROPERTIES
Non-transient data in an entity class is persisted to a database table. A JPA provider can both load

data from a database table into an entity class, and store data from an entity class into a database

table. The way the state is accessed by the provider is known as the access mode. There are two

access modes: field-based access and property-based access.

Field-based Access
Field-based access is provided by annotating fields. A persistent field in an entity class must be

declared with private, protected, or package level access. A persistent field should be one of the

following types:

84 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

• Java primitive types: byte, short, int, long, or char

• java.lang.String type

• Java Wrapper classes for primitive types: Byte, Short, Integer, Long, or Character

• Temporal types: java.util.Date, or java.sql.Date

• Enumerated types

• Embeddable classes, other entities, and collections of entities

The getter and setter methods may or may not be present. An example of field-based access is as

follows:

@Entity

public class Customer implements Serializable {

 // Note that the fields are annotated

 @Id

 protected int custId;

 protected String custName;

 @Temporal(TemporalType.DATE)

 protected Date registrationDate;

 @Column(name="address")

 protected Address custAddress;

}

NOTE
A Serializable interface is required for entity classes that are accessed through

a remote interface.

Field based access provides additional flexibility because fields or helper methods that should not

be part of the persistent state can be excluded using the @Transient annotation or by omitting

the getter and setter methods.

Property-based Access
To provide property-based access, getter and setter methods must be defined in a Java entity

class. Property-based access provides better encapsulation, as the access is only through

methods. Property-based access is provided by annotating the getter methods. The return type

of the getter method determines the type of the property. The return type of the getter method

must be the same as the type of an argument passed to the setter method. The getter and setter

methods must be either public or protected, and must follow the Java bean's naming conventions.

An example of property-based access is as follows:

@Entity

public class Customer implements Serializable {

 protected int custId;

 protected String custName;

 protected Date registrationDate;

 protected Address custAddress;

 //Note the getter methods are annotated

 @Id

JB083x-EAP-7.0-en-1-20181001 85

CHAPTER 4 | Managing Persistence

 public int getCustId(){

 return custId;

 }

 public String getCustName(){

 return custName;

 }

 @Temporal(TemporalType.DATE)

 public Date getRegistrationDate(){

 return registrationDate;

 }

 @Column(name="address")

 public Address getCustAddress(){

 return custAddress;

 }

 //Setter methods

}

Entity States
An entity can exist in one of four states during its lifetime. These four states are:

• New State: An entity instance created using Java's new operator is in a new or transient

state. An entity instance does not have a persistent identity and is not yet associated with the

persistence context.

• Managed State: An entity instance with a persistent identity and that is associated with a

persistence contex is in a managed or persistent state. When a change is made to the data in

managed entity fields, it is synchronized with the database table data. An entity instance is in the

managed state after an application calls the persist, find, or the merge method of an entity

manager.

• Removed State: A persistent entity can be removed from the database table in many ways.

A managed entity instance can be removed from the database table when a transaction is

committed, or when a remove method of an entity manager is called. An entity is then in the

removed state.

• Detached State: An entity has a persistent entity identity but is not associated with the

persistence context. This can happen when the entity is serialized or at the end of a transaction.

This state is known as a detached state of an entity.

86 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

Figure 4.3: JPA components relationship

ENTITYMANAGER INTERFACE AND KEY METHODS
The javax.persistence.EntityManager interface is used to interact with the persistence

context. The entity instances and their life cycles are managed within the persistence context.

The javax.persistence.EntityManager API is used to create new entity instances, find

entity instances by their primary key, query over entity instances, and remove the existing entity

instances. The key methods of EntityManager are:

persist()
The persist() method persists an entity and makes it managed. The persist() method inserts

a row in a database table. The persist() method throws PersistenceException if persist

operation fails.

@Stateless

public class CustomerServices {

 public void saveCustomer(Customer customer) {

 ...

 try{

 entityManager.persist(customer);
 }catch(PersistenceException persistenceException){

 // code to handle PersistenceException

 }

 }

}

find()
The find() method searches an entity of a specific class by its primary key and returns a

managed entity instance. If the object is not found, it returns a null.

@Stateless

public class CustomerServices {

 public void getCustomer(Customer customer) {

JB083x-EAP-7.0-en-1-20181001 87

CHAPTER 4 | Managing Persistence

 ...

 Customer customer;

 try{

 customer = entityManager.find(Customer.class,custId);
 if (customer != null){

 System.out.print(customer.getCustName());

 } else }

 System.out.print("Not Found");

 }

 }catch(Exception exception){

 // code to handle PersistenceException

 }

 }

}

contains()
The contains() method takes an instance as an argument and checks whether the instance is in

the persistence context:

@Stateless

public class CustomerServices {

 public boolean saveCustomer(Customer customer) {

 ...

 entityManager.persist(customer);

 return entityManager.contains(customer);

 }

}

merge()
The merge() method updates the data in a table for an existing detached entity. The merge()
method inserts a new row in a database table for an entity that is in a new or a transient state. After

the merge operation, an entity is in the managed state.

@Stateless

public class CustomerServices {

 public void updateCustomer(Customer customer) {

 ...

 Customer customer;

 try{

 customer = entityManager.find(Customer.class,custId);

 entityManager.merge(customer);
 }catch(Exception exception){

 // code to handle PersistenceException

 }

 }

}

remove()
The remove() method deletes a managed entity. To delete a detached entity, call a find()
method that returns a managed instance, and then call the remove() method.

88 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

@Stateless

public class CustomerServices {

 public void deleteCustomer(Customer customer) {

 ...

 Customer customer;

 try{

 customer = entityManager.find(Customer.class,custId);

 entityManager.remove(customer);
 }catch(Exception exception){

 // code to handle PersistenceException

 }

 }

 }

clear()
The clear() method clears the persistence context. After this operation, all managed entities are

in the detached state.

 ...

 try{

 entityManager.clear();
 }catch(Exception exception){

 // code to handle PersistenceException

 }

refresh()
The refresh() method refreshes the state of an entity instance from a database table. The

current data in an entity instance is overwritten by the data fetched from a database table.

 ...

 try{

 entityManager.refresh(customer);
 }catch(Exception exception){

 // code to handle PersistenceException

 }

IMPORTANT TAGS OF persistence.xml FILE
The persistence.xml file is a standard configuration file that contains the persistence units.

Each persistence unit has a unique name.

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1"

 xmlns="http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">

JB083x-EAP-7.0-en-1-20181001 89

CHAPTER 4 | Managing Persistence

 <persistence-unit name="Items" transaction-type="JTA">

 <jta-data-source>java:jboss/datasources/MySQLDS</jta-data-source>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.MySQLDialect" /

>

 <property name="hibernate.hbm2ddl.auto" value="update" />

 <property name="hibernate.show_sql" value="true" />

 <property name="hibernate.format_sql" value="true" />

 </properties>

 </persistence-unit>

</persistence>

persistence-unit name is the name of the persistence unit. The name of the persistence

unit is used to obtain the EntityManager.

transaction-type can be JTA or RESOURCE_LOCAL. Transaction type defines what

type of transactions an application intends to perform. Container transactions use Java

Transaction API (JTA), provided in every Java EE application server. In JTA type transactions,

a container is responsible for creating and tracking the entity manager. In RESOURCE_LOCAL,

you are responsible for creating and tracking the entity manager.

jta-data-source is the name of the data source. Each persistence unit must have a

database connection. The JPA provider finds the data source by name with JNDI lookup

service on startup.

Additional standard or vendor-specific properties can be set in the properties
element. The hibernate.Dialect property specifies which database is used. The

hibernate.hbm2ddl.auto property with an update value updates the schema

automatically. The hibernate.show-sql property with a value as true enables logging of

SQL statements to the console.

DEMONSTRATION: PERSISTING DATA
REFERENCES
Further information is available in the Development Guide for Java Persistence API for

Red Hat JBoss EAP 7, found at

https://docs.jboss.org/author/display/AS7/JPA+Reference+Guide/

90 JB083x-EAP-7.0-en-1-20181001

https://docs.jboss.org/author/display/AS7/JPA+Reference+Guide/

CHAPTER 4 | Managing Persistence

GUIDED EXERCISE

PERSISTING DATA

In this exercise, you will persist application data to a database.

OUTCOMES
You should be able to create an entity class and persist entity data.

BEFORE YOU BEGIN
The source code for the application is available in a Git repository.

If you have not done so already, open a terminal window on your system, and run the

following command to download the lab files required for this course.

$ git clone https://github.com/RedHatTraining/JB083x-lab

The above command creates a directory called JB083x-lab. This directory contains the

source code for all the applications used in this course. There are two subdirectories in this

directory named labs and solutions, which contain the source code for all the labs, and

the corresponding solution files for the labs in this course.

The source code for the application used in this exercise is in the labs/persist-entity
directory. The complete solution for this exercise is in the solutions/persist-entity
directory.

1. Import the persist-entity project into the Red Hat JBoss Developer Studio IDE (JBDS).

1.1. Start the Red Hat JBoss Developer Studio IDE.

1.2. In the JBDS menu, click File → Import to open the Import wizard.

1.3. On the Select page, click Maven → Existing Maven Projects, and then click Next.

1.4. In the Maven projects page, click Browse to open the Select root folder window.

Navigate to the JB083x-lab/labs/persist-entity directory, and then click

OK.

1.5. On the Maven projects page, click Finish.

1.6. Watch the JBDS status bar to monitor the progress of the import operation. It may

take a few minutes to download all the required dependencies.

NOTE
The persist-entity project has a compilation error when it is imported. This

error is resolved in the lab steps that follow.

JB083x-EAP-7.0-en-1-20181001 91

CHAPTER 4 | Managing Persistence

2. Convert a Java Person class to an entity class.

2.1. In the Project Explorer tab in the left pane of JBDS, select persist-entity → Java

Resources → src/main/java → com.redhat.training.model and expand the package.

2.2. Double-click the Person.java file in the selected com.redhat.training.model

package to open the class in the editor.

2.3. Add the @Entity annotation to the Person class in the

com.redhat.training.model package. Add the @Entity annotation and import the

javax.persistence.Entity library.

//add the required libraries

import javax.persistence.Entity;

//add @Entity annotation to the Person class

@Entity

public class Person {

 ...output omitted...

}

NOTE
Adding the @Entity annotation creates a compilation error. This error can be safely

ignored and will be resolved in a later step.

2.4. The Person entity class must implement the Serializable interface. Import and

implement the Serializable interface.

import javax.persistence.Entity;

import java.io.Serializable;

@Entity

public class Person implements Serializable {

 ...output omitted...

}

2.5. Add the @Id and @GeneratedValue(strategy =
GenerationType.IDENTITY) annotations to the id attribute of the Person
class to make it a primary key with a key generation strategy of IDENTITY. Add the

@Column(name="name") annotation to the personName attribute to map it to the

name field in the database table. Import the required libraries.

...

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Column;

@Entity

public class Person implements Serializable {

//add annotations for primary key

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

//add @Column(name="name") annotation to map column in database table

 @Column(name="name")

92 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

 private String personName;

 ...output omitted...

}

2.6. Press Ctrl+S to save the changes.

3. Open the PersonService class in the com.redhat.training.services package and

add the persistence functionality to save Person to the database and to find a person from

the database.

3.1. In the Project Explorer tab in the left pane of JBDS, select persist-entity → Java

Resources → src/main/java → com.redhat.training.services, and expand the

package.

3.2. Double-click the PersonService.java file in the com.redhat.training.services

package to open the PersonService class in the editor pane.

3.3. The EntityManager object is required to perform the persistence operations in

the PersonService class. Add a @PersistenceContext annotation to get an

EntityManager object:

import javax.persistence.PersistenceContext;

import javax.persistence.EntityManager;

@Stateless

public class PersonService {

 //TODO: obtain an EntityManager instance using @PersistenceContext

 @PersistenceContext(unitName="hello")

 private EntityManager entityManager;

 ...output omitted...

}

3.4. Persist a Person object into the database using the entity manager. Add the

following code to the public String hello(String name) method as follows:

public String hello(String name) {

 ...output omitted...

 // call persist() method of entity manager to save the data

 entityManager.persist(p);

 ...output omitted...

}

3.5. Find the name of a Person object using the unique id. Add the method

getPerson(Long id) to the PersonService class. In the return statement, use the

entity manager's find() method to return the name of the person based on the id.

// TODO:add public String getPerson(Long id) method here to fetch result

//by Person id using find() method

 public String getPerson(Long id) {

 return entityManager.find(Person.class, id).getPersonName();

 }

3.6. Observe the getAllPersons() method that returns all of the Person objects

stored in the database:

// Get all Person objects in the Database

public List<Person> getAllPersons() {

JB083x-EAP-7.0-en-1-20181001 93

CHAPTER 4 | Managing Persistence

 TypedQuery<Person> query = entityManager.createQuery("SELECT p FROM Person p",

 Person.class);

 List<Person> persons = query.getResultList();

 return persons;

}

3.7. Press Ctrl+S to save your changes.

4. Open the Hello class in the com.redhat.training.ui package. Uncomment both the

getPerson() and getPersons() methods to add the front-end functionality to view the

name of a single person and all of the names stored in the database.

4.1. In the Project Explorer tab in the left pane of JBDS, select persist-entity → Java

Resources → src/main/java → com.redhat.training.ui, and expand the package.

4.2. Double-click the Hello.java file in the selected com.redhat.training.ui package. The

Hello class opens in the editor pane.

4.3. Remove the comments on the public void getPerson() method.

public void getPerson() {

 try {

 String response = personService.getPerson(id);

 FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(response));

 }catch(Exception e){

 System.out.println(e.getCause());

 if(e.getCause() != null && e.getCause() instanceof

 ConstraintViolationException) {

 ConstraintViolationException ex = (ConstraintViolationException) e.getCause();

 String violations = "";

 for(ConstraintViolation<?> cv: ex.getConstraintViolations()) {

 violations += cv.getMessage() + "\n";

 System.out.println("Violations: "+violations);

 }

 FacesContext.getCurrentInstance().addMessage(null, new

 FacesMessage(violations));

 }

 }

}

4.4. Remove the comments on the public List<Person> getPersons() method.

public List<Person> getPersons() {

 return personService.getAllPersons();

}

94 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

5. Build and deploy the application.

5.1. Start EAP by selecting the Servers tab in the bottom pane of JBDS. Right-click the

server Red Hat JBoss EAP 7.0 [Stopped] and click the green "start" button to start

the server.

5.2. Build and deploy the persist-entity application using the following commands in the

terminal window:

$ cd JB083x-lab/labs/persist-entity

$ mvn clean wildfly:deploy

JB083x-EAP-7.0-en-1-20181001 95

CHAPTER 4 | Managing Persistence

6. Test the application for persistence.

6.1. Use a web browser to navigate to http://localhost:8080/persist-entity/
to access the persist-entity application.

Figure 4.4: The persist-entity application

6.2. Enter Samuel in the Enter your name field and click Submit.

6.3. Verify that the server processes the input and responds with a greeting using the

name you entered as well as the current time on the server.

Figure 4.5: The persist-entity application response

6.4. Repeat the previous step at least two more times, entering different names to

populate the database.

6.5. Click View all names to verify that all the names are stored in the database.

96 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

Figure 4.6: List of all names in the database

Click Back to return to the home page.

6.6. To find an individual person's name in the database, click the Search a name link.

Figure 4.7: Finding an individual name in the database

6.7. Enter the value for an id in the Enter Id: field and click Submit.

Figure 4.8: Displaying an individual name from the database

JB083x-EAP-7.0-en-1-20181001 97

CHAPTER 4 | Managing Persistence

Click Back to return to the home page.

7. Undeploy the application and stop EAP.

7.1. In the terminal window where you ran the Maven command to deploy the application,

run the following command to undeploy the application:

$ mvn clean wildfly:undeploy

7.2. Right-click the persist-entity project in the Project Explorer pane, and select

Close Project to close this project.

7.3. Right-click Red Hat JBoss EAP 7.0 in the Servers tab and then click Stop to stop the

EAP instance.

This concludes the guided exercise.

98 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

CREATING QUERIES

OBJECTIVE
After completing this section, students should be able to create queries using

Java Persistence Query Language.

CREATING QUERIES
Java Persistence Query Language (JPQL) is a platform-independent query language defined

as a part of the JPA specification to perform queries on entities in an object-oriented manner.

JPQL is similar to SQL in syntax, but JPQL queries are expressed in terms of Java entities rather

than database tables and columns. JPA providers, such as Hibernate, transform JPQL queries to

SQL. JPQL supports the SELECT, UPDATE, and DELETE statements. To understand how to create

different types of queries with JPQL, consider an example of an employee entity class:

@Entity

public class Employee implements Serializable{

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String empName;

 private double salary;

 ...

}

An Employee table is created in a database for an Employee entity. The sample data of all

employees from an Employee table is shown below:

MariaDB [todo]> select * from Employee;
+----+---------+--------+

| id | empName | salary |

+----+---------+--------+

| 1 | Tim | 120000 |

| 2 | Joe | 100000 |

| 3 | Tom | 125000 |

| 4 | Mia | 135000 |

| 5 | Matt | 145000 |

| 6 | Kim | 115000 |

| 7 | Nita | 117000 |

+----+---------+--------+

7 rows in set (0.00 sec)

The JPQL query to retrieve records of all employees from the database is as follows:

SELECT e FROM Employee e;

The EntityManager API supports methods for creating both static and dynamic queries. The

createNamedQuery method is used to create static queries, whereas the createQuery method

is used to create dynamic queries.

JB083x-EAP-7.0-en-1-20181001 99

CHAPTER 4 | Managing Persistence

Dynamic queries are created at runtime by an application using the following process:

1. Create a string containing a JPQL query.

2. Pass the string to the entity manager's createQuery method and store the returned Query
object.

3. Use the query's getResultList() method to execute the query and return the selected

rows from the database.

...

String simpleQuery="SELECT e from Employee e";

Query query=entityManager.createQuery(simpleQuery);

List<Employee> persons = query.getResultList();

...

The query retrieves all employees in a database table.

1, Tim, 120000.0

2, Joe, 100000.0

3, Tom, 125000.0

4, Mia, 135000.0

5, Matt, 145000.0

6, Kim, 115000.0

7, Nita, 117000.0

Database functions such as LOWER, UPPER, LENGTH, as well as arithmetic functions, can also be

applied to JPQL queries:

...

public List<String> getAllNames(){

 Query query=entityManager.createQuery("SELECT UPPER(e.empName) from Employee e");
 List<String> names = query.getResultList();

 return names;

}

This code displays all Employee names in uppercase:

Output:

 TIM

 JOE

 TOM

 MIA

 MATT

 KIM

 NITA

To provide type safety, JPA also supports the TypedQuery<?> class, which allows static typing

of queries to avoid any issues with casting results. To create a TypedQuery, pass the class that

should match the type of the query results into the createQuery method.

The following example shows a type-safe TypedQuery:

100 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

TypedQuery<Employee> query=entityManager.createQuery("SELECT e from Employee e

 where e.salary >?1 or e.empName=?2", Employee.class);

JPQL also supports arithmetic functions in queries. The following is an example to get the sum and

an average of the salaries of all employees:

...

public String[] getSumAndAvgSalary(){

 Query query=entityManager.createQuery("SELECT sum(e.salary), round(avg(e.salary),2)
 from Employee e");
 Object[] sal =(Object[])query.getSingleResult();

 String[] s= {"Sum of all salaries :"+sal[0],"avg of all salaries :

 "+sal[1]};

 return s;

}

This code results in the following output based on the given data set:

Output:

Sum of all salaries: 857000.0

Average of all salaries: 122428.57

Note that in the previous example, the query contains two fields: one for the sum of the salaries

and the other for the average salary. When multiple fields are returned as a result of the query, the

getSingleResult method returns an Object array.

The results of the queries are filtered using the WHERE clause in the queries. The WHERE clause

is used to define the conditions on the data that the query returns. To create a conditional

expressions for the query, various operators can be used. Operators available in SQL are also

available in JPQL. The operands in the condition depends on the expression. Commonly used

operators are:

• <, =, >, <=, >=, <> are used to compare the arithmetic values.

• IN and NOT IN are used for all types. IN operator is used to determine whether the data in a

field is one of the values provided in a list of values.

• LIKE and NOT LIKE are used for string values. It is used to determine whether data in a field

matches a sequence of characters provided in the string.

• BETWEEN and NOT BETWEEN are used for arithmetic, date, time, and string values. It is used to

determine whether data in a field lies in a certain range of values.

• MEMBER OF, NOT MEMBER OF, IS EMPTY, and IS NOT EMPTY are used for Collection
types.

Special characters like an _ (underscore) for any single character and a % character for any

character sequence can be used to build the string expressions. A simple example of a query with a

WHERE clause to print all employees whose salary is greater than 120000 is as follows:

Query query=entityManager.createQuery("SELECT e from Employee e where e.salary >120000");
List<Employee> persons = query.getResultList();

This code produces the following output based on the given data set:

JB083x-EAP-7.0-en-1-20181001 101

CHAPTER 4 | Managing Persistence

 Output:

 3, Tom, 125000.0

 4, Mia, 135000.0

 5, Matt, 145000.0

NAMED PARAMETERS IN QUERIES
Queries with the WHERE clause can be created with named parameters in JPQL. A named parameter

is a query parameter serving as a placeholder for real values. A query can be reused and executed

with a different set of data provided at runtime for a named parameter. A named parameter is

prefixed with a : character.

A named parameter is bound to the arguments by using the setParameter() method of

javax.persistence.Query API. The first parameter in the setParameter() method is the

name of a named parameter. The second parameter is the value for the named parameter. An

example of JPQL query with a named parameter is:

...

public List<Employee> getEmployeesWithGreaterSalary(double salary) {

 Query query=entityManager.createQuery("SELECT e from Employee e where e.salary

 >:sal");

 query.setParameter("sal", salary);

 List<Employee> persons = query.getResultList();

 return persons;

}

When a user inputs the value 115000 for the salary, the code returns the following output:

Output:

 1, Tim, 120000.0

 3, Tom, 125000.0

 4, Mia, 135000.0

 5, Matt, 145000.0

 7, Nita, 117000.0

POSITIONAL PARAMETERS IN QUERIES
The positional parameters are query parameters in the form of an index or the ordinal position of

a parameter in the query. These can be passed to queries as an alternative to named parameters,

depending on the developer's preference for readability. Positional parameters are prefixed with ?
followed by the numeric position of the parameter in the query.

The setParameter() method is used to bind a positional parameter to a query. The values for a

positional parameter is provided at runtime. The first parameter in the setParameter() method

is the position of a parameter in the query and the second parameter is a variable containing the

value for the parameter. An example of a JPQL query with one positional parameter where the

value of the salary for the query is provided in the first positional parameter as ?1 is as follows:

...

public List<Employee> getAllPersonsWithPositionParam(double salary) {

 Query query=entityManager.createQuery("SELECT e from Employee e where e.salary >?

1");

102 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

 query.setParameter(1, salary);

 return query.getResultList();

}

When the user inputs the value 130000 for the salary, the code produces the following output

based on the given data set:

Output:

 4, Mia, 135000.0

 5, Matt, 145000.0

The following is an example of a type-safe query with two positional parameters, where the first

positional parameter ?1 refers to the salary and the second positional parameter ?2 refers to the

name in the query:

...

public List<Employee> getAllPersons(double salary, String name) {

 TypedQuery<Employee> query=entityManager.createQuery("SELECT e from Employee e

 where e.salary >?1 or e.empName=?2", Employee.class);

 query.setParameter(1, salary);

 query.setParameter(2, name);

 return query.getResultList();

}

When the user inputs the values 130000 for the salary and Tim for the name, the code produces

the following output:

Output:

 1, Tim, 120000.0

 4, Mia, 135000.0

 5, Matt, 145000.0

NAMED QUERIES
A named query is a predefined query attached to an entity. Named queries are parsed at startup

so that errors can be detected quickly. Another advantage is that the code and the queries

are separate. Named queries are defined by using the javax.persistence.NamedQuery
annotation. The @namedQuery annotation can be applied at the entity's class level. The

@NamedQuery annotation has four elements: name, query, hints, and lockMode.

• A name is a required element of the NamedQuery annotation. It defines the name that is used

by the EntityManager methods to refer to a query. The name of the named query must be

unique, as the scope of the named query is the persistence unit.

• The query is a required element of the NamedQuery annotation and represents the JPQL query

string.

• The hints element is an optional element of the NamedQuery annotation. It represents query

hints and properties. These hints can be vendor-specific.

• The lockMode element is an optional element of the NamedQuery annotation. It represents the

lock mode type to use in query execution. When lock mode type is defined as anything other than

NONE, the query must be executed in a transaction.

JB083x-EAP-7.0-en-1-20181001 103

CHAPTER 4 | Managing Persistence

The named query to view all employees with a salary greater than the value input by the user is

defined in the Employee entity class:

@Entity

@NamedQuery(
 name="getAllEmployees",
 query="select e from Employee e where e.salary > :sal")
public class Employee implements Serializable{

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String empName;

 private double salary;

 ...

To execute the named query, use the createNamedQuery() method of the EntityManager to

create the query and set the parameters:

...

 public List<Employee> getPersonsWithNamedQuery(double salary) {

 Query query=entityManager.createNamedQuery("getAllEmployees")

 query.setParameter("sal", salary);

 retrun query.getResultList();

}

To define more than one named queries for an entity, the @NamedQueries annotation is used. It

acts as a wrapper for multiple queries, The @NamedQueries annotation is applied at the entity's

class level.

@Entity

@NamedQueries({

 @NamedQuery(name="getAllEmployees",

 query="select e from Employee e where e.salary > :sal"),

 @NamedQuery(name="getEmployeesWithSalaryOrName",

 query="select e from Employee e where e.salary > :sal or e.empName=:name")

})

public class Employee implements Serializable{

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String empName;

 private double salary;

....

The createNamedQuery() method creates the query. The parameters are set as follows:

public List<Employee> getAllPersonsWithNamedQueries(double salary, String ename) {

 Query query=entityManager.createNamedQuery("getEmployeesWithSalaryOrName");
 query.setParameter("sal", salary);
 query.setParameter("name", ename);

104 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

 List<Employee> persons = query.getResultList();

 return persons;

}

JB083x-EAP-7.0-en-1-20181001 105

CHAPTER 4 | Managing Persistence

GUIDED EXERCISE

CREATING QUERIES

In this exercise, you will create queries with named parameters and positional parameters as

well as a named query to retrieve data from the database.

OUTCOMES
You should be able to create named queries and create queries with both named parameters

and positional parameters.

BEFORE YOU BEGIN
The source code for the application is available in a Git repository.

If you have not done so already, open a terminal window on your system and run the

following command to download the lab files required for this course.

$ git clone https://github.com/RedHatTraining/JB083x-lab

The above command creates a directory called JB083x-lab. This directory contains the

source code for all the applications used in this course. There are two subdirectories in this

directory named labs and solutions, which contain the source code for all the labs, and

the corresponding solution files for the labs in this course.

The source code for the application used in this exercise is in the labs/create-queries
directory. The complete solution for this exercise is in the solutions/create-queries
directory.

1. Import the create-queries project into the Red Hat JBoss Developer Studio IDE (JBDS).

1.1. Start the Red Hat JBoss Developer Studio IDE.

1.2. In the JBDS menu, click File → Import to open the Import wizard.

1.3. On the Select page, click Maven → Existing Maven Projects, and then click Next.

1.4. In the Maven projects page, click Browse to open the Select root folder window.

Navigate to the JB083x-lab/labs/create-queries directory, and then click

OK.

1.5. On the Maven projects page, click Finish.

1.6. Watch the JBDS status bar to monitor the progress of the import operation. It may

take a few minutes to download all required dependencies.

106 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

2. Add a getAllPersons() method in the PersonService class to view all persons in the

Person database table.

2.1. In the Project Explorer tab in the left pane of JBDS, select create-queries → Java

Resources → src/main/java → com.redhat.training.services, and expand the

package.

2.2. Double-click the PersonService.java file in the com.redhat.training.services

package to open the PersonService class in the editor pane.

2.3. To view the data of all persons in a database table, add a new getAllPersons
method with a simple query:

// Get all Person objects in the Database

public List<Person> getAllPersons() {

 TypedQuery<Person> query = entityManager.createQuery("SELECT p FROM Person p",

 Person.class);

 return query.getResultList();

}

2.4. Press Ctrl+S to save your changes.

3. In the Hello.java bean in the com.redhat.training.ui package, uncomment the

getPersons() method to add the functionality to view the names of all Person objects in

the database.

3.1. In the Project Explorer tab in the left pane of JBDS, select create-queries → Java

Resources → src/main/java → com.redhat.training.ui, and expand the package.

3.2. Double-click the Hello.java file in the com.redhat.training.ui package to view the

class in the editor pane.

3.3. Remove the comments on the getPersons() method.

//View all persons in the database table

public List<Person> getPersons() {

 return personService.getAllPersons();

}

3.4. Press Ctrl+S to save your changes.

4. Build and deploy the application.

4.1. Start EAP by selecting the Servers tab in the bottom pane of JBDS. Right-click the

Red Hat JBoss EAP 7.0 [Stopped] server and click the green "start" button to start

the server.

4.2. Build the create-queries application using the following commands in the terminal

window:

$ cd JB083x-lab/labs/create-queries

$ mvn clean package

4.3. Deploy the create-queries application using the following command in the terminal

window:

$ mvn clean wildfly:deploy

JB083x-EAP-7.0-en-1-20181001 107

CHAPTER 4 | Managing Persistence

5. Test the application to view all persons.

5.1. Use a web browser to navigate to http://localhost:8080/create-queries/ to access

the create-queries application.

5.2. Click View All Users to view a list of the Person objects in the database.

Figure 4.9: The list of names in the database

6. Create a query with named parameters to fetch all Person objects from the database table

that match a specific name.

6.1. Click the PersonService.java file to edit the PersonService class in the editor

pane.

6.2. Add a new method called getPersonsWithName(String name) with a named

parameter:

//Get persons whose name matches the name given in the query

public List<Person> getPersonsWithName(String name) {

 TypedQuery<Person> query = entityManager.createQuery("SELECT p from Person p

 where p.name =:pname", Person.class);

 query.setParameter("pname", name);

 return query.getResultList();

}

6.3. Press Ctrl+S to save your changes.

7. In the Hello.java class in the com.redhat.training.ui package, uncomment the

search() method to view the names matching the user's search.

7.1. Double-click the Hello.java file in the com.redhat.training.ui package to view the

class in the editor pane.

7.2. Remove the comments on the search() method.

//view all persons whose name matches the name given in the query

public void search() {

 results = personService.getPersonsWithName(name);

}

7.3. Press Ctrl+S to save your changes.

8. Use the following command in the terminal window to deploy the create-queries

application:

$ mvn clean wildfly:deploy

108 JB083x-EAP-7.0-en-1-20181001

http://localhost:8080/create-queries/

CHAPTER 4 | Managing Persistence

9. Test the search feature of the application to verify that the query returns Person objects by

name.

9.1. Use a web browser to navigate to http://localhost:8080/create-queries/ to access

the create-queries application.

9.2. Click Search Users to navigate to the search page.

9.3. In the Name field, enter a name that already exists in the database, such as John,

and click Submit. Notice that the query returns both entries for John.

10. Modify the existing query to use positional parameters to fetch Person objects from the

database table.

10.1. Click the PersonService.java file to edit the PersonService class in the editor

pane.

10.2. Update the getPersonsWithName() method in the PersonService class to use

positional parameters:

//Get persons whose name matches the name given in the query

public List<Person> getPersonsWithName(String name) {

 TypedQuery<Person> query = entityManager.createQuery("SELECT p from Person p

 where p.name =?1", Person.class);

 query.setParameter(1, name);

 return query.getResultList();

}

WARNING
Ensure you do not put quotes around 1 in the setParameter line. It is an Integer
argument. If you quote the argument and make it a String argument, you will see

the following error in the JBoss EAP logs when this query is executed:

11:09:58,076 WARN [org.hibernate.jpa.spi.AbstractQueryImpl] (default task-25)

 HHH015014: DEPRECATION - attempt to refer to JPA positional parameter

 [?1] using String name ["1"] rather than int position [1] (generally in

 Query#setParameter, Query#getParameter or Query#getParameterValue calls).

10.3. Press Ctrl+S to save your changes.

11. Use the following command in the terminal window to deploy the create-queries

application:

$ mvn clean wildfly:deploy

12. Test the search feature that uses a positional parameter query.

12.1. Use a web browser to navigate to http://localhost:8080/create-queries/ to access

the create-queries application.

12.2. Click Search Users to navigate to the search page. In the Name field, enter a name

that already exists in the database, such as Nita, and click Submit. Verify that the

server returns the correct results.

JB083x-EAP-7.0-en-1-20181001 109

http://localhost:8080/create-queries/
http://localhost:8080/create-queries/

CHAPTER 4 | Managing Persistence

13. Create a named query to fetch Person objects from a database table.

13.1. In the Project Explorer tab in the left pane of JBDS, select create-queries →

Java Resources → src/main/java → com.redhat.training.model, and expand the

package.

13.2. Double-click the Person.java file in the com.redhat.training.model package to

open the Person class in the editor pane.

13.3. Click the Person.java file to edit the Person class in the editor pane.

13.4. Add the following NamedQuery annotation to create a named query to fetch the

Person objects by name:

@Entity

//add named query here

@NamedQuery(

 name="getAllPersonsWithName",

 query="select p from Person p where p.name = :pname")

public class Person{

 @Id

 private Long id;

 private String name;

...

}

13.5. Press Ctrl+S to save your changes.

13.6. In the PersonService.java class, update the getPersonsWithName method to

use the getAllPersonsWithName named query:

//Get persons whose name matches the name given in the query

public List<Person> getPersonsWithName(String name) {

 TypedQuery

 query=entityManager.createNamedQuery("getAllPersonsWithName",Person.class);

 query.setParameter("pname", name);

 return query.getResultList();

}

13.7. Press Ctrl+S to save your changes.

14. Use the following command in the terminal window to deploy the create-queries

application:

$ mvn clean wildfly:deploy

15. Test the search feature of the application using a named query.

15.1. Use a web browser to navigate to http://localhost:8080/create-queries/
to access the create-queries application.

15.2. Click Search Users to navigate to the search page. In the Name field, enter a name

that already exists in the database, such as John, and click Submit. Verify that the

server returns the expected results.

110 JB083x-EAP-7.0-en-1-20181001

CHAPTER 4 | Managing Persistence

16. Undeploy the application and stop EAP.

16.1. In the terminal window where you ran the Maven command to deploy the application,

run the following command to undeploy the application:

$ mvn clean wildfly:undeploy

16.2. Right-click the create-queries project in the Project Explorer pane and select

Close Project to close this project.

16.3. Right-click Red Hat JBoss EAP 7.0 in the Servers tab and then click Stop to stop the

EAP instance.

This concludes the guided exercise.

JB083x-EAP-7.0-en-1-20181001 111

CHAPTER 4 | Managing Persistence

SUMMARY

In this chapter, you learned:

• Java Persistence API (JPA) specification supports object-relational mapping and has three key

concepts: entities, persistence unit, and persistence context.

• A simple Java class is converted to an entity class by using an @Entity annotation.

• An entity class must specify a primary key field by using @Id annotation.

• The EntityManager performs the actual CRUD (Create, Read, Update, and Delete) operations

using persist(), find(), update(), and delete() methods. An EntityManager object

can be injected to an EJB using @Inject annotation.

• A persistence unit contains information about a data source, transactions type and the

persistence unit name. It is configured in a persistence.xml file.

• JPQL is a query language that supports dynamic and static queries. Queries can be created with

named parameters and positional parameters.

• Named queries are defined at the class level.

112 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5

MANAGING ENTITY
RELATIONSHIPS

GOAL Define and manage JPA entity relationships.

OBJECTIVES • Describe one-to-one and one-to-many entity
relationships.

SECTIONS • Configuring Entity Relationships (and Guided
Exercise)

JB083x-EAP-7.0-en-1-20181001 113

CHAPTER 5 | Managing Entity Relationships

CONFIGURING ENTITY RELATIONSHIPS

OBJECTIVE
After completing this section, students should be able to configure one-to-one and one-to-many

entity relationships.

UNDERSTANDING RELATIONSHIPS BETWEEN
ENTITIES
When building enterprise applications, developers use relational databases to store business data

created and updated using the application. Application data typically spans multiple database

tables, so it is common for data in one table to need to reference data in another.

Consider the following example: a database storing customer order data must have three tables,

one for customers, one for items, and one for the customer's orders. The order table needs to

reference both a customer record, as well as an item record.

To represent these relationships, databases use what is called a foreign key. A foreign key is a

column where the value of the data in the column is a reference to the ID or primary key of a row in

another table. When a client loads the order record, the data in the foreign key column is used to

retrieve the customer information as well as the item information. By referencing the data directly

in the customer and item tables by their primary keys, there is no need to duplicate that data in the

order table.

When representing database tables in Java EE, developers use entity beans, one for each table. To

create a relationship between two entities, class-level variables are used to represent an instance

of one entity as an attribute of another entity.

The following example shows sample Java entity beans for the customer order data described

previously:

Customer Entity:

@Entity

public class Customer {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 private String email;

...

Item Entity:

@Entity

public class Item {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

114 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

 private Long id;

 private String name;

 private String description;

 private Double price;

...

Order Entity:

@Entity

public class Item {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private Customer customer;

 private Item item;

...

Notice that the Customer and Item classes are used as attributes of the Order class. This, from

a Java class perspective, represents the relationship between those entities; each Order has a

Customer and an Item.

After the entity relationships are properly represented using class-level variables on the entity

beans, developers use annotations to control JPA and properly map those entities and their

relationships when retrieving data from the database. The following table summarizes these

annotations, all of which are covered in depth with examples later in the chapter:

Standard JPA Relationship Annotations

ANNOTATION DESCRIPTION

@OneToOne Defines an entity relationship as a single value, where one row in table

X is related to a single row in table Y, and vice versa.

@OneToMany Defines an entity relationship as multi-valued, where one row in table X

can be related to one or many rows in table Y.

@ManyToOne Defines an entity relationship as multi-valued, where many rows in

table X can be related to a single row in table Y.

@ManyToMany Defines an entity relationship as multi-valued, where many rows in

table X can be related to a one or may rows in table Y.

@JoinColumn Defines the column that JPA uses as the foreign key.

USING A ONE-TO-ONE ENTITY RELATIONSHIP
Use the @OneToOne annotation when two entities relate to each other such that an instance of one

entity only relates to a single instance of the other entity. For example, if an application stores user

information, but places sensitive information, such as a social security number, in a separate table,

JB083x-EAP-7.0-en-1-20181001 115

CHAPTER 5 | Managing Entity Relationships

then two entities such as User and UserSSN are related using a @OneToOne annotation. Using the

@OneToOne relationship, each user has a single SSN, and each SSN has a single user.

The following example demonstrates Java entity beans for such a scenario:

SQL to create the tables for these entities:

CREATE TABLE `UserSSN` (

 `id` BIGINT not null auto_increment primary key,

 `socialSecurityNumber` VARCHAR(25)

);

CREATE TABLE `User` (

 `id` BIGINT not null auto_increment primary key,

 `username` VARCHAR(25),

 `userSSNID` BIGINT,

 UNIQUE (`userSSNID`),

 UNIQUE (`username`),

 FOREIGN KEY (`userSSNID`) REFERENCES UserSSN(`id`) ON DELETE CASCADE

);

Sample data:

MariaDB [todo]> select * from UserSSN;

+----+-----------------------+

| id | socialSecurityNumber |

+----+-----------------------+

| 1 | aaa-aa-aaaa |

| 2 | bbb-bb-bbbb |

| 3 | ccc-cc-cccc |

| 4 | ddd-dd-dddd |

+----+----------------------+

MariaDB [todo]> select * from User;

+----+----------+-----------+

| id | username | userSSNID |

+----+----------+-----------+

| 1 | usera | 1 |

| 2 | userb | 2 |

| 3 | userc | 3 |

| 4 | userd | 4 |

+----+----------+-----------+

User Entity:

@Entity

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String username;

 @OneToOne(optional=false)

116 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

 @JoinColumn(name="userSSNID")

 private UserSSN userSSN;

The @OneToOne annotation tells JPA that a single instance of UserSSN is related to each

User instance. The optional option tells JPA that this field is required, and an error is

thrown if the database contains a row without a value for this column.

The @JoinColumn annotation tells JPA which column on the User table to use when looking

up the UserSSN row, in this case the column named userSSNID is used, which is the foreign

key configured in the database.

UserSSN Entity:

@Entity

public class UserSSN {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String socialSecurityNumber;

 @OneToOne(optional=false, mappedBy="userSSN")

 private User user;

The @OneToOne annotation tells JPA that a single instance of User is related to each

UserSSN instance. The mappedBy option is used because the UserSSN record doesn't have

any direct reference to the User, instead it uses the name of the field userSSN on the User
class itself.

The result of mapping this relationship on the entities is that when a User is retrieved from the

database, JPA automatically uses an SQL JOIN to connect the User table to the UserSSN table

and populates the UserSSN object on the User instance when it is returned to the application.

USING A ONE-TO-MANY ENTITY RELATIONSHIP
Use the @OneToMany and @ManyToOne annotations to map a JPA relationship anytime two

entities relate to each other such that one instance of one entity relates to potentially multiple

instances of the other entity. An example of this is a database used to store user information,

placing each user into a single group. For this, two entities are used: a User entity and a

UserGroup entity. These two are related using the @OneToMany and @ManyToOne annotations,

implying that many users belong to one group, and one group can be assigned to many users.

The following example shows Java entity beans for such a group scenario:

SQL to create the tables for these entities:

CREATE TABLE `UserGroup` (

 `id` BIGINT not null auto_increment primary key,

 `name` VARCHAR(25)

);

CREATE TABLE `User` (

 `id` BIGINT not null auto_increment primary key,

 `groupID` BIGINT,

 `username` VARCHAR(25),

 UNIQUE (`username`),

JB083x-EAP-7.0-en-1-20181001 117

CHAPTER 5 | Managing Entity Relationships

 FOREIGN KEY (`groupID`) REFERENCES UserGroup(`id`)

);

Sample data:

MariaDB [todo]> select * from UserGroup;

+----+----------------------+

| id | name |

+----+----------------------+

| 1 | Group A |

| 2 | Group B |

| 3 | Group C |

| 4 | Group D |

+----+----------------------+

MariaDB [todo]> select * from User;

+----+----------+-----------+

| id | username | groupID |

+----+----------+-----------+

| 1 | usera | 1 |

| 2 | userb | 2 |

| 3 | userc | 3 |

| 4 | userd | 4 |

+----+----------+-----------+

User Entity:

@Entity

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 @ManyToOne

 @JoinColumn(name="groupID")

 private UserGroup userGroup;

The @ManyToOne annotation tells JPA that a single instance of UserGroup is potentially

related to multiple User instances

The @JoinColumn annotation tells JPA which column to use when joining to the UserGroup
table, in this example groupID.

UserGroup Entity:

@Entity

public class UserGroup {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

118 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

 @OneToMany(mappedBy="userGroup")

 private Set<User> users;

The @OneToMany annotation tells JPA that potentially multiple User instances can belong to

a single UserGroup instance. The member variable on the UserGroup entity is Set<User>,

which permits multiple User instances to be stored. The mappedBy option is used because

the UserGroup table actually doesn't contain a reference to user, so JPA needs to use the

attribute userGroup on the User entity to do the mapping when creating the query.

TUNING THE PERFORMANCE OF LOADING
RELATIONSHIP DATA
Each relationship mapped with relationship JPA annotations requires extra processing to

populate the relational data. While this is not typically a problem with small data sets or simple

database schemas, it becomes cumbersome if developers are not careful. Nesting relationships or

complex database schemas with lots of relationships can be especially harmful to performance, as

sometimes multiple queries must be executed to retrieve necessary data, or complex joins must

be used. It is also very easy to use JPA to retrieve more data than intended, especially if every

relationship is mapped bidirectionally on both entities.

Consider a scenario where an application is storing automobile data. There are entities for Make,

Model, SubModel, and Car. Each of these entities has a relationship to each other. For each

Make, there are many Model instances, and for each Model there are many SubModel instances.

Additionally, the car entity has @ManyToOne relationships to each of these entities.

Make Entity:

@Entity

public class Make {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 @OneToMany(mappedBy="make")

 private Set<Model> models;

Model Entity:

@Entity

public class Model {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 @ManyToOne

 @JoinColumn(name="makeID")

 private Make make;

 @OneToMany(mappedBy="model")

JB083x-EAP-7.0-en-1-20181001 119

CHAPTER 5 | Managing Entity Relationships

 private Set<SubModels> submodels;

SubModel Entity:

@Entity

public class SubModel {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 @ManyToOne

 @JoinColumn(name="modelID")

 private Model model;

Car Entity:

@Entity

public class Car {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 @ManyToOne

 @JoinColumn(name="makeID")

 private Make make;

 @ManyToOne

 @JoinColumn(name="modelID")

 private Model model;

 @ManyToOne

 @JoinColumn(name="subModelID")

 private SubModel subModel;

 private Long year;

If all the relationships between these entities are mapped using JPA annotations, anytime a Car
is retrieved from the database, the Make, Model, and SubModel are also retrieved using joins.

However, because each of those entities has their interrelationships mapped, they also use the JPA

annotations to populate their member variables. This means the SubModel retrieves its Model
instances, the Model then retrieves its Make instances and all of its SubModel instances, the

Make retrieves its Model instances. After all of this data is loaded by JPA into memory, most of the

data in the database has been retrieved. This severely inhibits application performance with a large

data set.

USING LAZY-LOADING TO IMPROVE JPA
PERFORMANCE
Even if one entity has a relationship mapped to another entity with JPA annotations, it is not

always necessary to retrieve that related entity when loading the data for the first entity from

the database. This depends on the business logic that processes the instance of the entity being

120 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

loaded. For example, different screens in an application might require different amounts of

information required to display or have different performance requirements.

In the example of the Car entity described previously, loading a specific Model when a Car is

retrieved is probably required to display a specific car on screen, but loading all of the SubModel
instances for that Model is probably unnecessary to display a specific car on the screen.

To alleviate this problem and improve entity loading performance, JPA provides functionality called

lazy loading, or lazy fetching. With lazy loading, entities can map relationships, but only load those

relationships when needed.

The behavior of whether or not JPA loads related entities is called the fetch type. There are two

fetch types that can be used, lazy or eager. Eager fetching is the default setting, but can also

be set explicitly. To enable lazy loading, developers must set the FetchType value on the JPA

relationship annotation.

The following example shows a lazily loaded relationship:

@Entity

public class Make {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 @OneToMany(mappedBy="make", fetch=FetchType.LAZY)

 private Set<Model> models;

After adding lazy loading, when a Make is retrieved from the database, JPA does not attempt

to load all of its model instances. If later in the application logic, after the Make instance was

retrieved from the database, other business logic attempts to call getModels(), JPA attempts to

automatically call the database and populate the models. If the entity manager connection used

to retrieve the Make instance is no longer active, a LazyInitializationException is thrown

because JPA can no longer retrieve the models using the same connection.

USING THE JOIN FETCH CLAUSE IN JPQL QUERIES TO
EAGERLY FETCH RELATED ENTITIES
The JOIN FETCH clause in JPQL queries overrides lazy-loading behavior in entities and eagerly

fetches the related entity data. JOIN FETCH is useful when developing queries because it

separates management of the fetch behavior for each query. This allows developers to safely

include lazy fetching of related entity data by default, improving application performance by only

eagerly fetching the related data as needed by including a JOIN FETCH clause in the JPQL query.

To use a JOIN FETCH clause, include the name of the JPA-mapped collection that JPA should

fetch eagerly. A JOIN FETCH clause in a query overrides any fetch attribute specified on the JPA

annotation that maps the relationship. When a JOIN FETCH is included, it results in JPA including

a JOIN to the table mapped to the related entity in the SQL that is generated from the JPQL query.

The following is an example of a query that uses a JOIN FETCH clause to load the set of model
objects that are related to the make objects that JPA loads from the database:

TypedQuery<Make> query = em.createQuery("SELECT ma FROM Make ma JOIN FETCH

 ma.models WHERE ma.id = :id" , Make.class);

JB083x-EAP-7.0-en-1-20181001 121

CHAPTER 5 | Managing Entity Relationships

DEMONSTRATION: CONFIGURING ENTITY
RELATIONSHIPS

REFERENCES
Further information is available in the JPA chapter of the Development Guide for

Red Hat JBoss EAP 7 at

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-

application-platform/

122 JB083x-EAP-7.0-en-1-20181001

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/
https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/

CHAPTER 5 | Managing Entity Relationships

GUIDED EXERCISE

CONFIGURING ENTITY RELATIONSHIPS

In this exercise, you will configure entity relationships between multiple entities that are used

in a JSF-based web application.

OUTCOME
You should be able to correctly map one-to-one and many-to-one relationships using the

necessary JPA annotations.

BEFORE YOU BEGIN
The source code for the application is available in a Git repository.

If you have not done so already, open a terminal window on your system and run the

following command to download the lab files required for this course.

$ git clone https://github.com/RedHatTraining/JB083x-lab

The above command creates a directory called JB083x-lab. This directory contains the

source code for all the applications used in this course. There are two subdirectories in this

directory named labs and solutions, which contain the source code for all the labs, and

the corresponding solution files for the labs in this course.

The source code for the application used in this exercise is in the labs/entity-
relationships directory. The complete solution for this exercise is in the solutions/
entity-relationships directory.

1. Open Red Hat JBoss Developer Studio (JBDS) and import the Maven project.

1.1. Open Red Hat JBoss Developer Studio.

1.2. In the JBDS menu, click File → Import to open the Import wizard.

1.3. On the Select page, click Maven → Existing Maven Projects, and then click Next.

1.4. In the Maven projects page, click Browse to open the Select root folder window.

Navigate to the /home/student/JB183/labs/entity-relationships
directory, and then click OK.

1.5. On the Maven projects page, click Finish.

1.6. Watch the JBDS status bar to monitor the progress of the import operation. It may

take a few minutes to download all the required dependencies.

2. Map the one-to-one relationships between the User and Email entities.

2.1. Open the Email class by expanding the entity-relationships item in the Project

Explorer tab in the left pane of JBDS, and then click entity-relationships → Java

Resources → src/main/java → com.redhat.training.model and expand it. Double-

click the Email.java file.

Add the @OneToOne JPA annotation to map the relationship to the User entity:

@Entity

JB083x-EAP-7.0-en-1-20181001 123

CHAPTER 5 | Managing Entity Relationships

public class Email {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String address;

 //TODO map relationship

 @OneToOne(mappedBy="email")

 private User user;

Notice the mappedBy attribute used. This is because the column that dictates how to

map user records to email records is stored in the user table, and is represented by

the email variable on the User entity class.

NOTE
If JBDS raises an error about the mapping to User, this is expected. This error is

resolved in the next step.

2.2. Press Ctrl+S to save your changes.

2.3. Open the User class by expanding the entity-relationships item in the Project

Explorer tab in the left pane of JBDS, and then click entity-relationships → Java

Resources → src/main/java → com.redhat.training.model and expand it. Double-

click the User.java file.

Add the @OneToOne JPA annotation to map the relationship to the Email entity:

@Entity

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 //TODO map relationship

 @OneToOne

 @JoinColumn(name="emailID")

 private Email email;

Notice the @JoinColumn annotation. This tells JPA which column to use when

joining the User table to the Email table. In this case, it uses the emailID column.

2.4. Press Ctrl+S to save your changes.

3. Map the one-to-many relationship between the UserGroup and User entities.

3.1. Open the UserGroup class by expanding the entity-relationships item in the Project

Explorer tab in the left pane of JBDS, and then click entity-relationships → Java

124 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

Resources → src/main/java → com.redhat.training.model and expand it. Double-

click the UserGroup.java file.

Add the @OneToMany JPA annotation to map the relationship to the UserGroup
entity:

@Entity

public class UserGroup {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 @OneToMany(mappedBy="userGroup")

 private Set<User> users;

Notice the mappedBy attribute. This is used because the column to map user

records to user-group records is stored in the user table, and is represented by the

userGroup variable on the User entity class.

NOTE
If JBDS raises an error about the mapping to User, this is expected. This error is

resolved in the next step.

3.2. Press Ctrl+S to save your changes.

3.3. Open the User class by expanding the entity-relationships item in the Project

Explorer tab in the left pane of JBDS, and then click entity-relationships → Java

Resources → src/main/java → com.redhat.training.model and expand it. Double-

click the User.java file.

Add the @ManyToOne JPA annotation to map the relationship to the UserGroup
entity:

@Entity

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 //TODO map relationship

 @OneToOne

 @JoinColumn(name="emailID")

 private Email email;

 //TODO map relationship

 @ManyToOne

 @JoinColumn(name="groupID")

JB083x-EAP-7.0-en-1-20181001 125

CHAPTER 5 | Managing Entity Relationships

 private UserGroup userGroup;

Notice the @JoinColumn annotation. This tells JPA which column to use when

joining the User table to the UserGroup table. In this case, it uses the groupID
column.

3.4. Press Ctrl+S to save your changes.

4. Start EAP by selecting the Servers tab in the bottom pane of JBDS. Right-click the server

Red Hat JBoss EAP 7.0 [Stopped], and click the green button to start the server. Watch the

Console until the server starts and displays the message:

INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: JBoss EAP 7.0.0.GA

 (WildFly Core 2.1.2.Final-redhat-1) started

5. Deploy the application on JBoss EAP using Maven by running the following commands:

$ cd JB083x-lab/labs/entity-relationships

$ mvn clean wildfly:deploy

When the deployment is complete, the output displays BUILD SUCCESS, as shown in the

following example:

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 17.116 s

[INFO] Finished at: 2016-12-01T07:26:55-05:00

[INFO] Final Memory: 35M/210M

[INFO] --

Validate the deployment in the server log shown in the Console tab in JBDS. When the

application is deployed, the following message appears in the log:

INFO [org.jboss.as.server] (management-handler-thread - 9) WFLYSRV0010: Deployed

 "entity-relationships.war" (runtime-name : "entity-relationships.war")

126 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

6. Test the application in a browser.

6.1. Navigate to http://localhost:8080/entity-relationships in a browser.

Figure 5.1: Application home page

6.2. Choose a group from the drop-down list to view the members in that group.

The page updates with a stack trace because of a

LazyInitializationException:

Figure 5.2: Application error response

Notice the first error message:

org.hibernate.LazyInitializationException: failed to lazily initialize a

 collection of role: com.redhat.training.model.UserGroup.users, could not

 initialize proxy - no Session

This error was caused by the fact that the JSF page tried to load the set of

users from a group that was loaded from the database, but the user entity

objects were not loaded into memory. Therefore, the JPA session was already

closed when the JSF page attempted the call to getUsers(), causing the

LazyInitializationException.

This error can be fixed by eagerly loading the user objects when fetching the group

objects.

7. Update the UserGroup entity to use eager fetching on this set of users.

7.1. Open the UserGroup class by expanding the entity-relationships item in the Project

Explorer tab in the left pane of JBDS, and then click entity-relationships → Java

JB083x-EAP-7.0-en-1-20181001 127

CHAPTER 5 | Managing Entity Relationships

Resources → src/main/java → com.redhat.training.model and expand it. Double-

click the UserGroup.java file.

Add the fetch attribute to the JPA annotation and set the fetch type to

FetchType.EAGER to eagerly load the relationship to the User entity:

@Entity

public class UserGroup {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 @OneToMany(mappedBy="userGroup", fetch=FetchType.EAGER)

 private Set<User> users;

7.2. Press Ctrl+S to save your changes.

8. Redeploy the application on JBoss EAP using Maven by running the following commands:

$ mvn clean wildfly:deploy

When the deployment is complete, you should see BUILD SUCCESS in the output as shown

in the following example:

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 17.116 s

[INFO] Finished at: 2016-12-01T07:26:55-05:00

[INFO] Final Memory: 35M/210M

[INFO] --

Validate the deployment in the server log shown in the Console tab in JBDS. When your

application has been deployed successfully, the following appears in the log:

INFO [org.jboss.as.server] (management-handler-thread - 9) WFLYSRV0016: Replaced

 deployment "entity-relationships.war" with deployment "entity-relationships.war"

128 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

9. Test the application in a browser.

9.1. Open http://localhost:8080/entity-relationships in a browser.

9.2. Choose a group and view its users. The application displays users and email

addresses of the group.

Figure 5.3: Correct application response

10. Update the UserGroup entity to use lazy fetching on this set of users and override this

behavior using a JOIN FETCH in the query.

10.1. In the UserGroup entity class in com.redhat.training.model, update the

fetch attribute of the JPA annotation and set the fetch type to FetchType.LAZY
to lazily load the relationship to the User entity:

@Entity

public class UserGroup {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 @OneToMany(mappedBy="userGroup", fetch=FetchType.LAZY)

 private Set<User> users;

10.2. Press Ctrl+S to save your changes.

10.3. Update the UserBean EJB in the com.redhat.training.ejb package to use a

JOIN FETCH to eagerly fetch the set of users for a group.

@Stateless

public class UserBean {

 @Inject

 private EntityManager em;

 public Set<UserGroup> getAllUserGroups(){

 TypedQuery<UserGroup> query = em.createQuery("SELECT g FROM UserGroup g JOIN

 FETCH g.users" , UserGroup.class);

JB083x-EAP-7.0-en-1-20181001 129

CHAPTER 5 | Managing Entity Relationships

 return new HashSet<UserGroup>(query.getResultList());

 }

}

10.4. Press Ctrl+S to save your changes.

11. Redeploy the application on JBoss EAP using Maven by running the following commands:

$ mvn clean wildfly:deploy

When the deployment is complete, you should see BUILD SUCCESS in the output as shown

in the following example:

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 17.116 s

[INFO] Finished at: 2016-12-01T07:26:55-05:00

[INFO] Final Memory: 35M/210M

[INFO] --

Validate the deployment in the server log shown in the Console tab in JBDS. When your

application has been deployed successfully, the following message appears in the log:

INFO [org.jboss.as.server] (management-handler-thread - 9) WFLYSRV0016: Replaced

 deployment "entity-relationships.war" with deployment "entity-relationships.war"

12. Test the application in a browser.

12.1. Open http://localhost:8080/entity-relationships in a browser.

12.2. Choose a group and view its users. The application displays the users and email

addresses of the group without any errors.

13. Undeploy the application and stop JBoss EAP.

13.1. Run the following command to undeploy the application:

$ mvn clean wildfly:undeploy

13.2. To close the project, right-click the entity-relationships project in the Project

Explorer tab, and select Close Project.

13.3. Right-click the Red Hat JBoss EAP 7.0 server in the JBDS Servers tab and click Stop.

This concludes the guided exercise.

130 JB083x-EAP-7.0-en-1-20181001

CHAPTER 5 | Managing Entity Relationships

SUMMARY

In this chapter, you learned:

• Relationships between JPA entity classes are mapped using annotations.

• There are three main types of relationships between entities: one-to-one, one-to-many, and

many-to-many. JPA provides annotations to map each of these relationship types.

• When mapping relationships between entities, it is important to consider performance

implications of making JPA load related entities. When possible, leverage lazy-loading to avoid

slower performance when related entities are not needed.

• JPA provides the fetch attribute, which can be set to FetchType.EAGER or

FetchType.LAZY when mapping related entities. If lazy fetching is used for relationship

mapping, then attempting to load that relationship data after the initial entity manager session

results in a LazyInitializationException.

JB083x-EAP-7.0-en-1-20181001 131

132 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6

CREATING REST SERVICES

GOAL Create REST APIs using the JAX-RS specification.

OBJECTIVES • Describe web services concepts and list types
of web services.

• Create a REST service using the JAX-RS
specification.

SECTIONS • Describing Web Services Concepts (and Quiz)

• Creating REST Services with JAX-RS (and
Guided Exercise)

JB083x-EAP-7.0-en-1-20181001 133

CHAPTER 6 | Creating REST Services

DESCRIBING WEB SERVICES CONCEPTS

OBJECTIVE
After completing this section, students should be able to describe web services concepts and

types.

WEB SERVICES
Web services expose standardized communication for interoperability between application

components over HTTP. By abstracting applications into individual components that communicate

across web services, each system becomes loosely coupled to each other. This separation provides

a greater ability to modify applications or integrate new systems into the application. Using a

standard format for data transfer, such as JSON or XML, allows applications that consume web

services to require only the ability to make an HTTP request to the service and to process the

service's response.

In recent years, enterprise applications built on a foundation of web services have grown in

popularity. One of the primary reasons for this increase in adoption is the need for applications

to support multiple devices, such as desktop and mobile, while reducing development time to

support diverse applications. By abstracting out the device-specific presentation layer, the data

layer becomes a service layer. This separation allows organizations to quickly develop applications

on a variety of platforms while reusing a shared back end built with web services. This approach

reduces time to develop applications and to maintain changes to the back-end by not requiring

work to be repeated across all supported platforms.

For example, consider a web application for a bank. The business wants to expand into the mobile

market with a brand new mobile application. The developers' first step is to expose an API to

access the application data. By exposing the bank's back end with a web services layer, the front

end of the web application separates from the business logic of the application. As a result, the

developers of the bank's application can create a mobile application front-end using web services

without affecting the existing front-end application. Another benefit to exposing the services layer

is that other front-end applications or web components needing the application's data can also call

the same service endpoints. The following graphic demonstrates this architecture:

134 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

Figure 6.1: Web service application architecture

TYPES OF WEB SERVICES
There are two implementations of web services that are discussed in this course:

• JAX-RS RESTful Web Services

• JAX-WS Web Services

Both of these implementations provide the same benefits of using web services, such as loose

coupling and standardized protocols, however JAX-WS and JAX-RS differ in a number of important

ways that must be carefully considered before deciding which approach to use.

NOTE
This course primarily uses JAX-RS. Discussions about JAX-WS are included to

provide contrast to RESTful web services.

JB083x-EAP-7.0-en-1-20181001 135

CHAPTER 6 | Creating REST Services

JAX-RS
JAX-RS is the Java API for creating lightweight RESTful web services. In Red Hat JBoss EAP 7,

the implementation of JAX-RS is RESTEasy, which is fully compliant with the JSR-311 specification

entitled Java API for RESTful Web Services 2.0 and provides additional features for efficient

development of REST services.

Developers can build RESTEasy web services by using annotations to mark certain classes and

methods as endpoints. Each endpoint represents a URL that a client application can call and,

depending on the type of annotation, specify the type of HTTP request.

In contrast with other approaches to web services, RESTful web services can use a smaller message

format, such as JSON, compared to XML and others that create more overhead for each request.

Each endpoint can be annotated to determine both the format of the data received and the format

of the data returned to the client. Also, RESTful web services do not require use of a WSDL or

anything similar to what is required when consuming JAX-WS services. This makes consuming

RESTful web services much simpler, as consumers can simply make requests to individual

endpoints in a service.

JAX-WS
JAX-WS is the Java API for XML-based web services using the Simple Object Access Protocol

(SOAP). JBossWS is the JSR-224 Java API for XML-based Web Services 2.2 specification compliant

implementation for JAX-WS in Red Hat JBoss EAP 7.

To define a standard protocol for communication between applications, JAX-WS services use an

XML definition file written using Web Services Description Language (WSDL). In many ways, WSDL

simplifies the creation of web services by allowing an IDE, such as JBoss Developer Studio, to use

the service definition to create clients that can interact with the service automatically. This service

definition, however, does require more maintenance for the developers of the service. JAX-WS

services also require clients and consumers to make more formal requests compared to JAX-RS,

which can make requests to individual endpoints simply over HTTP.

REFERENCES
JSR-311 Java API for RESTful Web Services 2.0
http://www.jcp.org/en/jsr/detail?id=311

JSR-224 Java API for XML-based Web Services 2.2
http://www.jcp.org/en/jsr/detail?id=224

REFERENCES
Further information is available in the Developing Web Services Guide for Red Hat

JBoss EAP 7; at

https://access.redhat.com/documentation/en-us/

red_hat_ jboss_enterprise_application_platform/

136 JB083x-EAP-7.0-en-1-20181001

http://www.jcp.org/en/jsr/detail?id=311
http://www.jcp.org/en/jsr/detail?id=224
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/

CHAPTER 6 | Creating REST Services

QUIZ

WEB SERVICES

Match the items below to their counterparts in the table.

A lightweight, readable data format used by RESTful web services.

An XML format that describes the endpoints for a SOAP service.

The SOAP service EAP implementation.

The annotation-based web service implementation.

The specification for JAX-RS.

The specification for JAX-WS.

TERM DEFINITION

WSDL

JSON

JSR-311 Java API for

RESTful Web Services 2.0

JSR-224 Java API for

XML-based Web Services

2.2

RESTEasy

JBossWS

JB083x-EAP-7.0-en-1-20181001 137

CHAPTER 6 | Creating REST Services

SOLUTION

WEB SERVICES

Match the items below to their counterparts in the table.

TERM DEFINITION

WSDL
An XML format that describes the endpoints for a SOAP

service.

JSON
A lightweight, readable data format used by RESTful web

services.

JSR-311 Java API for

RESTful Web Services 2.0
The specification for JAX-RS.

JSR-224 Java API for

XML-based Web Services

2.2

The specification for JAX-WS.

RESTEasy The annotation-based web service implementation.

JBossWS The SOAP service EAP implementation.

138 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

CREATING REST SERVICES WITH JAX-RS

OBJECTIVES
After completing this section, students should be able to:

• Create REST services with JAX-RS.

• Consume REST web services.

• Differentiate HTTP methods.

RESTFUL WEB SERVICES WITH JAX-RS
As described in the previous section, JAX-RS is the Java API used to create RESTful web services.

REST web services are designed to be as simple as possible to improve usability both for the

developers of the services and for the clients consuming the services. In order to maintain a level

of simplicity, web services must adhere to several standards in order to be considered RESTful.

By implementing a web service layer, developers can abstract the front-end layer and create an

application comprised of many loosely coupled components. This type of architecture is known as a

client-server architecture, and it is a requirement for REST web services.

Another defining feature of RESTful web applications is that the services are stateless. Each

request made to a RESTful web service must provide a response that contains all of the required

information needed by the client, but the service cannot be responsible for maintaining any

information regarding the session state. This restriction ensures that the client is responsible for

maintaining the session state rather than needlessly complicating the REST web service.

A Java EE application can utilize a RESTful web service to abstract the HTML or mobile front end

from the business logic and data layer. By creating specific endpoints, such as the endpoint to

get a list of all of the To Do List items, clients can get the information in JSON format to make it

easier to parse the data. For example, the following illustrates an HTTP GET request on the To Do

List application's /api/items/{id} REST endpoint, which returns a To Do List item from the

database based on the item's ID:

$ curl localhost:8080/todo/api/items/1

The service returns the following JSON response:

{"id":1,"description":"Pick up newspaper","done":false,"user":null}

Any client with access to service can retrieve this information, allowing for multiple front-end

applications to leverage the same data and business logic for the To Do List application. Clients

only need to be able to make HTTP requests and to parse the responses from the service in order

to consume the REST service.

Java EE 7 supports JAX-RS 2.0, which makes developing RESTful web services and adhering to

their standards very simple. JAX-RS utilizes several annotations in order to define the behavior

of the web services. These annotations are placed directly in the service class to create different

types of endpoints and to define parameters. To facilitate the development of web services, JBoss

Developer Studio has a wizard to create all necessary files to define a RESTful web service.

JB083x-EAP-7.0-en-1-20181001 139

CHAPTER 6 | Creating REST Services

CREATING RESTFUL WEB SERVICES
A JAX-RS RESTful web service consists of one or more classes utilizing the JAX-RS annotations

to create a web service. The first step to create the web service is to create a class that

extends the class javax.ws.rs.core.Application. In addition to declaring the RESTful

web service, the new subclass is used to also define the base URI for the web service with

the @ApplicationPath annotation. The following is an example of a class that extends

javax.ws.rs.core.Application:

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/api")
public class Service extends Application {
 //Can be left empty

}

The @ApplicationPath annotation sets the base URI for the web service. In the previous

example, the application path is configured to be /api. As a result, all requests to this service must

be preceded by "/api" in the URI. For example, if the application's context path is hello-world
and the application is available at http://localhost:8080/helloworld, then the REST

service is exposed at http://localhost:8080/helloworld/api/. This URI is often further

expanded when adding additional endpoints and paths.

NOTE
Optionally, you can use the new subclass to provide custom implementations for

some methods in the parent class, however it is not required to do any further

modification than the given example in order to implement a RESTful web service.

An alternative to subclassing the javax.ws.rs.core.Application class is using the web.xml
in the application to define the javax.ws.rs.core.Application class and specify the base

URI. The following example web.xml provides the same functionality as the previous Java-based

example without requiring the creation of an additional Java class:

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_3_0.xsd">

 <servlet>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>
 </servlet>

 <servlet-mapping>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>
 <url-pattern>/api/*</url-pattern>
 </servlet-mapping>

 ...

</web-app>

THE RESTFUL ROOT RESOURCE CLASS
Using the available JAX-RS annotations is an easy way to create a RESTful web service from an

existing POJO class. For example, consider a basic POJO, such as the following:

140 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

public class HelloWorld {

 public String hello() {

 return "Hello World!";

 }

}

By annotating this class and method with the following annotations, the method becomes exposed

as an endpoint within the RESTful web service:

@Stateless

@Path("hello")

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

public class HelloWorld {

 @GET

 public String hello() {

 return "Hello World!";

 }

}

This example service exposes the hello() method to a standard HTTP GET request. Therefore,

accessing http://localhost:8080/hello-world/api/hello using an HTTP GET request

(such as with a web browser) returns the String Hello World! in JSON.

Recall that the @ApplicationPath annotation on the Application class dictates the base URI

for all requests to that application. Additionally, within the RESTful service class, the class and the

individual methods and endpoints can be designated with their own specific @Path value. This

allows users of the service to more intuitively access a resource.

Looking at the previous example, notice that the @Path annotation at the class level is

set to hello. This annotation creates another layer in the URI, in addition to the existing

@ApplicationPath. The following sample shows another example of modifying the @Path
annotation:

@Stateless

@Path("hello")

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

public class HelloWorld {

 @GET

 @Path("person/{id}/name")

 public String hello(String id) {

 return "Hello" + id + "!";

 }

}

In this instance, this method is called when making a request to the following URI: http://
localhost:8080/hello-world/api/hello/person/1/name. The {id} part of the path is

a variable, which is denoted by the surrounding braces, and its value must be provided by the client

in the URI for every request.

JB083x-EAP-7.0-en-1-20181001 141

CHAPTER 6 | Creating REST Services

The following table summarizes the available annotations for the remainder of the RESTful root

resource class:

JAX-RS Annotations

ANNOTATION DESCRIPTION

@ApplicationPath The @ApplicationPath annotation is applied to the subclass of the

javax.ws.rs.core.Application class and defines the base URI

for the web service.

@Path The @Path annotation defines the base URI for either the entire

root class or for an individual method. The path can contain either

an explicit static path, such as hello, or it can contain a variable

to be passed in on the request. This value is referenced using the

@PathParam annotation.

@Consumes The @Consumes annotation defines the type of the request's content

that is accepted by the service class or method. If an incompatible type

is sent to the service, the server returns HTTP error 415, "Unsupported

Media Type." Acceptable parameters include application/json,

application/xml, text/html, or any other MIME type.

@Produces The @Produces annotation defines the type of the response’s content

that is returned by the service class or method. Acceptable parameters

include application/json, application/xml, text/html, or

any other MIME type.

@GET The @GET annotation is applied to a method to create an endpoint for

the HTTP GET request type, commonly used to retrieve data.

@POST The @POST annotation is applied to a method to create an endpoint for

the HTTP POST request type, commonly used to save or create data.

@DELETE The @DELETE annotation is applied to a method to create an endpoint

for the HTTP DELETE request type, commonly used to delete data.

@PUT The @PUT annotation is applied to a method to create an endpoint for

the HTTP PUT request type, commonly used to update existing data.

@PathParam The @PathParam annotation is used to retrieve a parameter passed in

through the URI, such as http://localhost:8080/hello-web/
api/hello/1.

@QueryParam The @QueryParam annotation is used to retrieve a parameter

passed in through the URI as a query parameter, such as http://
localhost:8080/hello-web/api/hello?id=1.

CUSTOMIZING REQUESTS AND RESPONSES
One of the strengths of JAX-RS is the ability to customize both the MIME type of the request

and response. For organizations that require enforcing a specific type of request or response,

such as XML, the @Produces or @Consumes annotations can be modified to enforce XML as the

response and request type, respectively. You may prefer to use JSON, as it is a lightweight MIME

type compared to XML and may reduce bandwidth.

142 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

The annotation @Produces defines the MIME media type for the response returned by the service.

The annotation @Consumes defines the MIME media type for the request required by the service.

Both @Produces and @Consumes can be applied at either the method level, the class level, or

both. If applied to both, the annotation at the method level takes precedence and overrides the

class-level annotation. If no annotation for either @Produces or @Consumes is defined on the

method, the method defaults to the MIME type defined at the class level.

The following example defines a JAX-RS class that demonstrates the use of the @Produces and

@Consumes annotation:

@Stateless

@Path("hello")

@Produces(MediaType.APPLICATION_JSON)

public class HelloWorld {

 @GET

 @Produces("text/html")

 public String hello() {

 return "Hello World!";

 }

 @GET

 @Path("newest")

 public Person getNewestPerson() {

 ...implementation omitted...

 }

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 public String savePerson(Person person) {

 ...implementation omitted...

 }

}

The hello() method returns output that the client must expect to be in HTML. This is

dictated by the method level @Produces("text/html") annotation.

The getNewestPerson() method returns output that the client must expect to be in JSON.

This is dictated by the class level @Produces(MediaType.APPLICATION_JSON) because

there is no method level @Produces annotation.

The savePerson(Person person) method requires that the request is in JSON, otherwise

the client receives an HTTP 415 error for unsupported media type.

HTTP METHODS
The HTTP protocol defines several methods through which the protocol enacts different actions.

The client is responsible for specifying the type of request in addition to the path of the request.

The following is a list of the methods:

• GET: The GET method retrieves data.

• POST: The POST method creates a new entity.

• DELETE: The DELETE method removes an entity.

• PUT: The PUT method updates an entity.

JB083x-EAP-7.0-en-1-20181001 143

CHAPTER 6 | Creating REST Services

Each HTTP method has a similarly named annotation that is used to annotate methods in a RESTful

service class. If two Java methods exist on the same path, JAX-RS determines which method to use

by matching the HTTP method on the HTTP request made by the client and the annotation on the

method. The following is an example of a RESTful web service class:

@Stateless

@Path("hello")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class HelloWorld {

 @GET

 @Path("person")

 public List<Person> getPersons() {

 ...implementation omitted...

 }

 @POST

 @Path("person")

 public String savePerson(Person person) {

 ...implementation omitted...

 }

 @PUT

 @Path("person")

 public String updatePerson(Person person) {

 ...implementation omitted...

 }

 @DELETE

 @Path("person/{id}")

 public String deletePerson(@PathParam("id") String id) {

 ...implementation omitted...

 }

}

This method returns a JSON representation of the Java list of Person objects when an HTTP

GET request is made to the following URI: http://localhost:8080/hello-world/
hello/person.

This method creates a Person object when an HTTP POST request with the JSON

representation of a Person is made to the following URI: http://localhost:8080/
hello-world/hello/person.

This method updates a Person object when an HTTP PUT request with the JSON

representation of an existing Person is made to the following URI: http://
localhost:8080/hello-world/hello/person.

This method deletes a Person object when an HTTP DELETE request is made to the following

URI: http://localhost:8080/hello-world/hello/person/1.

Notice that the GET, POST, and PUT methods are all on the same path, however the client is able to

dictate which endpoint is reached based on the HTTP method that is specified on the request.

144 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

INJECTING PARAMETERS FROM THE URI
In many instances, clients using RESTful web services need to request specific information from a

service. This is accomplished either by providing parameters in the URI, either as a path parameter

or a query parameter.

To use a path parameter on a JAX-RS method, annotate it with the @PathParam annotation. This

annotation is typically used when the client is requesting a specific resource, such as requesting a

user's data. The following is an example of a path parameter:

 @GET

 @Path("{id}")

 public Person getPerson(@PathParam("id") Long id) {

 return entityManager.find(Person.class, id);

 }

The variable id is passed in by the client in the URI as part of the path. For example, the

following request is compatible with this method: http://localhost:8080/hello-web/
api/hello/1. The 1 is passed into the getPerson() method.

The @PathParam annotation maps the variable from the path to the Java method parameter.

To use a query parameter on a JAX-RS method, annotate it with the @QueryParam annotation.

This annotation is typically used in searches and when filtering data, such as filtering users by their

email preferences. The following is an example of a query parameter used to determine which users

want emails sent to them based on the variable sendEmail:

 @GET

 @Path("users")

 public List<Person> getUsers(@QueryParam("sendEmail") String sendEmail) {

 return entityManager.find("SELECT * USERS WHERE user.sendEmail=" + sendEmail);

 }

The @QueryParam annotation maps the value that is used in the URI for sendEmail to a

Java String of the same name. The following is an example URI that passes in a false flag

to the sendEmail variable: http://localhost:8080/hello-world/api/users?
sendEmail=false.

The return method leverages the mapped value to the Java variable by using it to query the

database and filter all of the users by the parameter. In this instance, the query parameter

lists the users based on the value of the sendEmail variable.

In many instances, a query parameter requires a default value to both prevent the client's request

from failing for not providing a parameter and to allow the developers of the service to create a

single method for searching and filtering without making all parameters required. The following is

the same example with the default value for the sendEmail variable set to False:

@GET

 @Path("users")

 public List<Person> getUsers(@DefaultValue("True") @QueryParam("sendEmail") String
 sendEmail) {

 return entityManager.find("SELECT * USERS WHERE user.sendEmail=" + sendEmail);

 }

JB083x-EAP-7.0-en-1-20181001 145

CHAPTER 6 | Creating REST Services

With the default value set to True, the client is no longer required to provide the value in the URI

and can instead make a request to http://localhost:8080/hello-world/api/users to

receive a list of users that are accepting emails.

REFERENCES
Further information is available in the Developing Web Services Guide for

Red Hat JBoss EAP 7; at

https://access.redhat.com/documentation/en-us/

red_hat_ jboss_enterprise_application_platform/

146 JB083x-EAP-7.0-en-1-20181001

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/

CHAPTER 6 | Creating REST Services

GUIDED EXERCISE

EXPOSING A REST SERVICE

In this exercise, you will expose a REST API for an application.

OUTCOMES
You should be able to create a RESTful web service and test the service using the Firefox

REST client add-on.

BEFORE YOU BEGIN
The source code for the application is available in a Git repository.

If you have not done so already, open a terminal window on your system and run the

following command to download the lab files required for this course.

$ git clone https://github.com/RedHatTraining/JB083x-lab

The above command creates a directory called JB083x-lab. This directory contains the

source code for all the applications used in this course. There are two subdirectories in this

directory named labs and solutions, which contain the source code for all the labs, and

the corresponding solution files for the labs in this course.

The source code for the application used in this exercise is in the labs/hello-rest
directory. The complete solution for this exercise is in the solutions/hello-rest
directory.

1. Import the hello-rest project into the Red Hat JBoss Developer Studio (JBDS) IDE.

1.1. Start the Red Hat JBoss Developer Studio IDE.

1.2. In the JBDS menu, click File → Import to open the Import wizard.

1.3. On the Select page, click Maven → Existing Maven Projects, and then click Next.

1.4. In the Maven projects page, click Browse to open the Select root folder window.

Navigate to the JB083x-lab/labs/hello-rest directory and then click OK.

1.5. On the Maven projects page, click Finish.

1.6. Watch the JBDS status bar to monitor the progress of the import operation. It may

take a few minutes to download all required dependencies.

2. Create the root context for the web service.

2.1. In the expanded hello-rest item in the Project Explorer tab in the left pane of JBDS,

select hello-rest → Java Resources → src/main/java → com.redhat.training.rest

and expand the package.

2.2. Right-click com.redhat.training.rest and click New → Class.

2.3. In the Name field, enter Service and then click Finish.

2.4. In the new class, add the @ApplicationPath annotation, import the library, and

specify the path as /api:

package com.redhat.training.rest;

JB083x-EAP-7.0-en-1-20181001 147

CHAPTER 6 | Creating REST Services

import javax.ws.rs.ApplicationPath;

@ApplicationPath("/api")

Public class Service {

}

2.5. Complete the class by importing and extending the

javax.ws.rs.core.Application class:

package com.redhat.training.rest;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/api")

public class Service extends Application {

}

2.6. Press Ctrl+S to save your changes.

3. Open and update the PersonService.java RESTful web service in the

com.redhat.training.rest package to be stateless using the @Stateless
annotation.

//TODO Add the stateless annotation

@Stateless

4. Add the @Path annotation to make the endpoints for this web service class available at

http://localhost:8080/hello-rest/api/persons/:

//TODO Add a Path for persons

@Path("persons")

5. Define the @Consumes and @Produces media type for the service.

5.1. Add the @Consumes annotation to allow the service to consume JSON:

//TODO Add a Consumes annotation for JSON

@Consumes(MediaType.APPLICATION_JSON)

5.2. Add the @Produces annotation to allow the service to produce JSON:

//TODO Add a Produces annotation for JSON

@Produces(MediaType.APPLICATION_JSON)

6. Configure the getPerson(), getAllPersons(), deletePerson(), and

savePerson() methods in the PersonService.java class to be available as REST

endpoints.

6.1. Expose the getPerson(Long id) method by adding the @GET annotation:

//TODO add GET annotation

148 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

 @GET

 public Person getPerson(Long id) {

 return entityManager.find(Person.class, id);

 }

6.2. Update the getPerson(Long id) method to allow consumers of the REST service

to request a person object with a specific ID using the REST endpoint by adding the

@Path and @PathParam annotations:

 @GET

//TODO add path for ID

 @Path("{id}")

 public Person getPerson(@PathParam("id") Long id) {

 return entityManager.find(Person.class, id);

 }

A GET request to http://localhost:8080/hello-rest/api/persons/3 now

returns the JSON representation of the Person with ID 3.

6.3. Add a @GET annotation to the getAllPersons() method to expose the method as

a REST endpoint:

 //TODO add GET annotation

 @GET

 public List<Person> getAllPersons() {

 TypedQuery<Person> query = entityManager.createQuery("SELECT p FROM Person p",

 Person.class);

 List<Person> persons = query.getResultList();

 return persons;

 }

A GET request to http://localhost:8080/hello-rest/api/persons/ now

returns the JSON representation of all Person objects in the database.

6.4. Add the annotation for @DELETE to the deletePerson(Long id) method to allow

HTTP DELETE requests to remove a Person object from the database:

 //TODO add DELETE annotation

 @DELETE
 public void deletePerson(Long id) {

 try {

 try {

 tx.begin();

 entityManager.remove(getPerson(id));

 } finally {

 tx.commit();

 }

 } catch (Exception e) {

 throw new EJBException();

 }

 }

6.5. Similar to the method that returns an individual Person object, the deletePerson
method requires an ID parameter to remove a specific Person from the database.

JB083x-EAP-7.0-en-1-20181001 149

CHAPTER 6 | Creating REST Services

Update the method with a @Path and a PathParam annotation to allow users to

pass in that parameter in the HTTP request:

@DELETE

 //TODO add Path for ID

 @Path("{id}")

 public void deletePerson(@PathParam("id") Long id) {

 try {

 try {

 tx.begin();

 entityManager.remove(getPerson(id));

 } finally {

 tx.commit();

 }

 } catch (Exception e) {

 throw new EJBException();

 }

 }

A DELETE request to http://localhost:8080/hello-rest/api/persons/3
now removes the person object with ID 3 from the database.

6.6. Add a @POST annotation to the savePerson(Person person) method to create

an endpoint for saving a Person object to the database:

//TODO add POST annotation

 @POST

 public Response savePerson(Person person) {

 try {

 ...output omitted...

 }

A POST request to http://localhost:8080/hello-rest/api/persons/
with a JSON representation of a Person object now persists that person to the

database.

6.7. Press Ctrl+S to save your changes.

7. Start EAP by selecting the Servers tab in the bottom pane of JBDS. Right-click the server

Red Hat JBoss EAP 7.0 [Stopped] and click the green "start" button to start the server.

8. Deploy the hello-rest application using the following commands in the terminal window:

$ cd JB083x-lab/labs/hello-rest

$ mvn clean wildfly:deploy

150 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

9. Test the REST API using the Firefox REST Client add-on.

9.1. Start Firefox and click the REST Client add-on in the browser's toolbar.

Figure 6.2: The Firefox REST client add-on

9.2. In the top toolbar, click Headers and then select Custom Header to add a new custom

header to the request.

9.3. In the custom header dialog, enter the following information:

• Name: Content-Type

• Value: application/json

Figure 6.3: Creating a custom request header in the REST Client

Click Okay.

9.4. Select POST as the Method. In the URL form, enter http://localhost:8080/
hello-rest/api/persons.

9.5. In the Body section of the request, add the following JSON representation of a

Person entity:

{"name":"Shadowman"}

Click Send.

9.6. Verify in the Response Headers tab that the Status Code is 200 OK.

JB083x-EAP-7.0-en-1-20181001 151

CHAPTER 6 | Creating REST Services

Figure 6.4: Response to the HTTP POST request

9.7. Change the Body of the request to the following to trigger the bean validation for the

Person entity that requires that the name attribute has more than two characters:

{"name":"a"}

Click Send and observe that the response returns with a status code of 500 to

indicate a server error.

9.8. List all the Person objects.

Select GET as the Method. In the URL form, enter http://localhost:8080/
hello-rest/api/persons and then click Send.

Verify in the Response Headers tab that the Status Code is 200 OK, and in the

Response tab, the body should contain the following:

[{"id":1,"name":"Shadowman"}]

Figure 6.5: Response to the HTTP GET request

9.9. Delete the newly created Person object by ID.

Select DELETE as the Method. In the URL form, enter http://localhost:8080/
hello-rest/api/persons/1 and then click Send.

Verify in the Response Headers tab that the Status Code is 204.

Repeat the step to list all the Person objects using a GET request and verify that the

response body shows an empty array:

[]

152 JB083x-EAP-7.0-en-1-20181001

CHAPTER 6 | Creating REST Services

10. Undeploy the application and stop EAP.

10.1. In the terminal window, run the following command to undeploy the application from

EAP:

$ mvn clean wildfly:undeploy

10.2. Right-click the hello-rest project in the Project Explorer tab, and select Close

Project to close this project.

10.3. Right-click Red Hat JBoss EAP 7.0 in the Servers tab and then click Stop to stop the

EAP instance.

This concludes the guided exercise.

JB083x-EAP-7.0-en-1-20181001 153

CHAPTER 6 | Creating REST Services

SUMMARY

In this chapter, you learned:

• JAX-RS is the Java API for creating lightweight RESTful web services.

• Implementing a web service layer allows developers to abstract the front end layer and create an

application comprised of many loosely coupled components.

• A JAX-RS RESTful web service consists of one or more classes utilizing the JAX-RS annotations

to create a web service.

• The @ApplicationPath annotation sets the base URI for the web service.

• The HTTP protocol defines several methods through which the protocol enacts different actions.

The client is responsible for specifying the type of request in addition to the path of the request.

• The @PathParam annotation maps a variable from a path to the Java method parameter.

• The request() method on the WebTarget class enables developers to define the type of

HTTP request to make to a REST endpoint.

• An HTTP status code of 200 indicates that the request was successful.

154 JB083x-EAP-7.0-en-1-20181001

	Fundamentals of Java EE Development
	Table of Contents
	Document Conventions
	Introduction
	Fundamentals of Java EE Development
	Lab Setup Instructions for Exercises

	Chapter 1. Transitioning to Multi-tiered Applications
	Describing Enterprise Applications
	Quiz: Describing Enterprise Applications
	Describing Multi-tiered Application Architecture
	Quiz: Multi-tiered Application Architecture
	Developing Applications Using Red Hat JBoss Developer Studio
	Guided Exercise: Developing Applications Using Red Hat JBoss Developer Studio
	Summary

	Chapter 2. Packaging and Deploying Applications to an Application Server
	Describing an Application Server
	Quiz: Describing an Application Server
	Packaging and Deploying a Java EE Application
	Guided Exercise: Packaging and Deploying a Java EE Application
	Summary

	Chapter 3. Creating Enterprise Java Beans
	Converting a POJO to an EJB
	Guided Exercise: Creating a Stateless EJB
	Summary

	Chapter 4. Managing Persistence
	Describing the Persistence API
	Quiz: Describing the Persistence API
	Persisting Data
	Guided Exercise: Persisting Data
	Creating Queries
	Guided Exercise: Creating Queries
	Summary

	Chapter 5. Managing Entity Relationships
	Configuring Entity Relationships
	Guided Exercise: Configuring Entity Relationships
	Summary

	Chapter 6. Creating REST Services
	Describing Web Services Concepts
	Quiz: Web Services
	Creating REST Services with JAX-RS
	Guided Exercise: Exposing a REST Service
	Summary

