
Data Structures
and Algorithms（11）

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang "Data Structures and Algorithms"

2 2Ming Zhang “Data Structures and Algorithms”

Content

• 11.1 Linear Indexing

• 11.2 Static Indexing

• 11.3 Inverted Indexing

• 11.4 Dynamic Indexing

– 11.4.1 B Tree

– 11.4.2 Analysis of B Tree

– 11.4.3 B+ Tree

– 11.4.4 Comparison of B Tree and B+ Tree

• 11.5 Bit Indexing

• 11.6 Red-Black Tree

目录页

Chapter 11

Indexing Indexing

3 Ming Zhang “Data Structures and Algorithms”

11.4.3 B
+
tree

• A variant of B tree, stores information in leaves

– all key values appear in leaves

– key values of each node are copies of the largest

(or smallest) key values of the corresponding

nodes in the next level

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing Indexing

4 4Ming Zhang “Data Structures and Algorithms”

Structure of B
+
Tree

m-rank B
+

tree is structured as below:

(1) Each node has at most m children

(2) Each node (other than the root) has at least children

(3) The root has at least 2 children

(4) A node with k children has k key values.

/ 2m  

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

5 5Ming Zhang “Data Structures and Algorithms”

An example of a B+ tree of order 3 (usually rank >= 3)

• Searching in B
+

tree

– Keep searching until the expected key value is found

– Move downward along pointers to the key value in the leaves

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

6 6Ming Zhang “Data Structures and Algorithms”

Insertion in a B
+
Tree

• Insertion – splitting

– Similar to that of B tree

– The father node must have the largest (or

smallest) key values of these two nodes

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

7 Ming Zhang “Data Structures and Algorithms”

Insert 15 into a B
+

Tree of order 3

b

e
f

g h k l

d

i j

c

50 60 70 80 90

75 80 85 9065 7055 6048 5035 4025 30

15

5 10 2010

20 30 40

a

40 70 90

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

8 Ming Zhang “Data Structures and Algorithms”

After inserting 15, the height of the tree increases by one

40

a’

b

e f g h k l

d

i j

c

50 60 70 80 90

75 80 85 9065 7055 6048 5035 4025 305 10 15 20

10 20 30 4020

70 90

40 90

t

a

m

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

9 Ming Zhang “Data Structures and Algorithms”

Deletion in a B
+
Tree

• When overflows, adjust it with brothers (maybe even merge

them)

• When a key is deleted in a leaf, its copy in the upper level can

be retained, as a "division key".

– or substituted with the new largest (or smallest) key.

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

10 10Ming Zhang “Data Structures and Algorithms”

40 90

8050 6020 30

40

5 10 20 25 30 35 40 45 47

50

55 60 65 70 75 85 9080

9070

7060

Delete 75, overflow occurs, the remaining key 80

merges with its right neighbor to a new node（80，
85，90), 80 is deleted in the father node

Father node overflows

Borrows keys from its left neighbor, and

both share keys

Division key 70 in the root is

changed to 60

Delete 75 in a B
+

Tree of order 3

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

11 Ming Zhang “Data Structures and Algorithms”

Another type of B
+

Tree

• The number of key values in the leaves is not the same as

that of non-leaves

– internal nodes construct a B tree

– rank of leaves is the same as a B+ tree

– e.g., the rank of the leaves is 5, and that of internal nodes

is 4

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

12 Ming Zhang “Data Structures and Algorithms”

Delete a record with key of 33 from a B
+

tree

33

18 23 48

10 12 15 18 19 20 21 22 23 30 31 33 45 47 48 50 52

Insufficient number of keys

merge brother nodes

The rank of leaf node is 5, the rank of the internal node is 4

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

13 Ming Zhang “Data Structures and Algorithms”

33

18 23

10 12 15 18 19 20 21 22 23 30 31 45 47 48 50 52

move keys from

brothers

Delete a record with key of 33 from a B
+

tree

 The rank of leaf node is 5, the rank of the internal node is 4

Insufficient number of keys

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

14 Ming Zhang “Data Structures and Algorithms”

3318

23

10 12 15 18 19 20 21 22 23 30 31 45 47 48 50 52

Delete a record with key of 33 from a B
+

tree

 The rank of leaf node is 5, the rank of the internal node is 4

目录页

Chapter 11

Indexing 11.4.3 B+ Tree

15 Ming Zhang “Data Structures and Algorithms”

• Suppose a main file with N records, and a page can store

m (key, page addr) pairs

• Suppose each node of a B+ tree has 0.75m children in

average

– Occupation ratio is (1+0.5)/2 = 75％

• So the height of this B+ tree is  Nm75.0log

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

B
+

tree actually has higher storage utilization

目录页

Chapter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

16 16Ming Zhang “Data Structures and Algorithms”

• Capable of containing m (key, page pointer) pair, supposing a key

takes up the same amount of bytes as a pointer

• Capable of containing 2m/3 of a B tree's (key, implicit pointer,

page pointer) (B tree is 0.67m- rank)

• If the occupation ratio of a B tree is 75%, then each node of it has

0.5m children

• The height of B tree is  log .0 5m N
(18,a1) (33,a2)

(10,a7) (15,a8) (20,a9) (24,a10) (31,a11) (45,a12) (50,a13)

(12,a3)
(23,a4) (30,a5)

(48,a6)

(key, implicit pointer)

main file

目录页

Chapter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

17 Ming Zhang “Data Structures and Algorithms”

B
+

tree is used more widely

• B
+

tree is more efficient, with less searching levels

(relatively shorter trees)

• Thus, B
+

tree is used more widely

– primary key indexing of database system

– B+ tree based VSAM (Virtual Storage Access Method),

substitutes the multiway tree based ISAM

40 90

8050 6020 30 40

5 10 20 25 30 35 40 45 47 50 55 60 65 70 75 85 9080

9070

70

目录页

Chapter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

18 18

目录页

Ming Zhang “Data Structures and
Algorithms”

第十一章

索引

•索引

第十一章

… … …

控制域

……

控制区间

索引

顺序集

数据集

V SA M 文件结构

Organization of VSAM

19 19Ming Zhang “Data Structures and Algorithms”

Discussion

• 1. Is there a B
+

tree of order 2?

• 2. Why is B tree less efficient,

compared to B+ tree?

• 3. Refer to materials of database, and

think about the usage of B+ tree.

目录页

Chapter 11

Indexing Indexing

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

Ming Zhang “Data Structures and Algorithms”

