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Content

Linear Indexing
Static Indexing
Inverted Indexing

11.4 Dynamic Indexing

- 11.4.1 B Tree

- 11.4.2 Analysis of B Tree

- 11.4.3 B+ Tree

- 11.4.4 Comparison of B Tree and B+ Tree

11.5 Bit Indexing
11.6 Red-Black Tree
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11.4.3 Bt tree

A variant of B tree, stores information in leaves
- all key values appear in leaves

- key values of each node are copies of the largest
(or smallest) key values of the corresponding
nodes in the next level
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Structure of B+ Tree

m-rank B+ tree is structured as below:

(1) Each node has at most m children

(2) Each node (other than the root) has at least fm/Z_‘children
(3) The root has at least 2 children

(4) A node with k children has k key values.
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An example of a B+ tree of order 3 (usually rank >= 3)
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Searching in B* tree
- Keep searching until the expected key value is found
- Move downward along pointers to the key value in the leaves
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Insertion in a B* Tree

- Insertion - splitting
- Similar to that of B tree

- The father node must have the largest (or
smallest) key values of these two nodes
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Insert 15 into a B+ Tree of order 3
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After inserting 15, the height of the tree increases by one
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Deletion in a B* Tree

- When overflows, adjust it with brothers (maybe even merge
them)

- When a key is deleted in a leaf, its copy in the upper level can
be retained, as a "division key".

- or substituted with the new largest (or smallest) key.
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Delete 75 in a B* Tree of order 3
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Another type of B* Tree

The number of key values in the leaves is not the same as
that of non-leaves

- internal nodes construct a B tree
- rank of leaves is the same as a B+ tree
- e.g., the rank of the leaves is 5, and that of internal nodes

is 4
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Delete a record with key of 33 from a B+ tree

Insufficient number of keys

33
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«The rank of leaf node is 5, the rank of'th\ei ternal node is 4

merge brother nodes
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Delete a record with key of 33 from a B* tree

move keys from Insufficient number of keys
brothers

33
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= The rank of leaf node is 5, the rank of the internal node is 4
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Delete a record with key of 33 from a B* tree
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= The rank of leaf node is 5, the rank of the internal node is 4
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B+ tree actually has higher storage utilization

Suppose a main file with N records, and a page can store
m (key, page addr) pairs

Suppose each node of a B+ tree has 0.75m children in
average

- Occupation ratio is (1+0.5)/2 = 75%
So the height of this B+ tree is| 109, e, N |
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Capable of containing m (key, page pointer) pair, supposing a key
takes up the same amount of bytes as a pointer

Capable of containing 2m/3 of a B tree's (key, implicit pointer,
page pointer) (B tree is 0.67m- rank)

If the occupation ratio of a B tree is 75%, then each node of it has
0.5m children

The height of B tree is |_|Ogo_5m N—I/ﬁg,an (33,a2

(12,a3) /tﬁ?‘l) (30,a5 (48,a6)

(10,a7) ases | (20';19) II_Z/‘alO) 31a1d) || @s.a12) (50,a13)

( key, implicit pointer)

main file
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B+ tree is used more widely

B+ tree is more efficient, with less searching levels
(relatively shorter trees)

Thus, B* tree is used more widely
- primary key indexing of database system

- B+ tree based VSAM (Virtual Storage Access Method),
substitutes the multiway tree based ISAM
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Organization of VSAM
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Discussion

. 1. Is there a Bt tree of order 27

- 2. Why is B tree less efficient,
compared to B+ tree?

. 3. Refer to materials of database, and
think about the usage of B+ tree.
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