Ming Zhang "Data Structures and Algorithms"

Data Structures
and Algorithms (11)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (the "Eleventh Five-Year” national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

el N

Indexing | Indexing

Content

Linear Indexing
Static Indexing
Inverted Indexing

11.4 Dynamic Indexing

- 11.4.1 B Tree

- 11.4.2 Analysis of B Tree

- 11.4.3 B+ Tree

- 11.4.4 Comparison of B Tree and B+ Tree

11.5 Bit Indexing
11.6 Red-Black Tree

W N =

_ 2 Ming Zhang “Data Structures and Algorithms”

B Chepter 11

Indexing | Indexing

11.4.3 Bt tree

A variant of B tree, stores information in leaves
- all key values appear in leaves

- key values of each node are copies of the largest
(or smallest) key values of the corresponding
nodes in the next level

40 70 9(\

20 30 40 50 60 70 80 90
5 1020 |&l. 2530 ®1.3540 {24547 50-|2.5560 tel 657012.75 80 -121.85 90
A v oV v oV vV v v v oV v oV N v v

3 Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Structure of B+ Tree

m-rank B+ tree is structured as below:

(1) Each node has at most m children

(2) Each node (other than the root) has at least fm/Z_‘children
(3) The root has at least 2 children

(4) A node with k children has k key values.

40 70 90\

50 60 70 50 %0

5 1020 lel. 2530 ff.3540 el 45475025560 2] 65 701e.75 80 -fal.85 90

vV VvV V vV Vv \ 2 / vV V V vV Vv vV Vv vV Vv \ 2 /

_ Chapter 11
Indexing | 11.4.3 B+ Tree

An example of a B+ tree of order 3 (usually rank >= 3)

40 70 90

506070\8090

5 1020 |2 2530 -pf.3540 a[454750 |p[5560 af 65701275 80 fal 8590
vV vy v vy vy vy vy vy

Searching in B* tree
- Keep searching until the expected key value is found
- Move downward along pointers to the key value in the leaves

_ 5 Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Insertion in a B* Tree

- Insertion - splitting
- Similar to that of B tree

- The father node must have the largest (or
smallest) key values of these two nodes

/szo 70 90
20 30 40)50 60 70K 30 90

5 10 20 25 30 35 40 4547 50 55 60 65 70 75 80 85 90

v OV ¥ v ¥ v ¥ 2R 2NN / vV v v v v oV v oV

_ 6 Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Insert 15 into a B+ Tree of order 3

d
40 70 90
b C d
2p 30 4p 5060 70 80 90
10 1110 20 ‘1&-] 25 30 .1 35 40 <. 48 50 &+ 55 60 &].65 70 &} 75 80 2..] 85 90

15

Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

After inserting 15, the height of the tree increases by one

t
40 90
/ \a
4070 90
b m \ d
10220 30 40 5060 70 80 90

/e\f \\ h i ' k\l

510 ‘W{1520 fgl2530 [|¥{3540 |#}4850 [|&lss60 [|¥fes70 |ef7s80 [Ef8590

Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Deletion in a B* Tree

- When overflows, adjust it with brothers (maybe even merge
them)

- When a key is deleted in a leaf, its copy in the upper level can
be retained, as a "division key".

- or substituted with the new largest (or smallest) key.

20 30 40)50 60 70K 80 90

5 10 20 25 30 35 40 4547 50 55 60 65 70 75 80 85 90
vV oy vy vy vovoy v vy Vo vy

_ 9 Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Delete 75 in a B* Tree of order 3

DaRRLTIBP0e OB A WSes r sy igmaining key 80
B iy ot mes diebo ned ghbeor ,nande (80 ,
botPhSfrikepteted in the father node

40 0 90

20 30)50 60 7(K 80 90
T~ 7~

5 1020 || 2530 35 40 45 471155 60 65 70 75 80 85 90

Ming Zhang “Data Structures and Algorithms”

B Chooer 1 .

Indexing | 11.4.3 B+ Tree

Another type of B* Tree

The number of key values in the leaves is not the same as
that of non-leaves

- internal nodes construct a B tree
- rank of leaves is the same as a B+ tree
- e.g., the rank of the leaves is 5, and that of internal nodes

is 4
d 40
b C
18| 25|33 48

_ 11 Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Delete a record with key of 33 from a B+ tree

Insufficient number of keys

33

18 |23 <

\

1012 15 18 19 20 21 22 23 30 31 33 45 47 48 50 52

«The rank of leaf node is 5, the rank of'th\ei ternal node is 4

merge brother nodes

_ 12 Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Delete a record with key of 33 from a B* tree

move keys from Insufficient number of keys
brothers

33

18 |23 < >

|

1012 15 18 19 20 21 22 23 30 31 45 47 48 50 52

= The rank of leaf node is 5, the rank of the internal node is 4
_ 13 Ming Zhang “Data Structures and Algorithms”

_ Chapter 11
Indexing | 11.4.3 B+ Tree

Delete a record with key of 33 from a B* tree

23
18 < » 33
10 12 15 18 19 20 21 22 {e » 233031 45 47 48 50 52

= The rank of leaf node is 5, the rank of the internal node is 4
_ 14 Ming Zhang “Data Structures and Algorithms”

B Chepter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

B+ tree actually has higher storage utilization

Suppose a main file with N records, and a page can store
m (key, page addr) pairs

Suppose each node of a B+ tree has 0.75m children in
average

- Occupation ratio is (1+0.5)/2 = 75%
So the height of this B+ tree is| 109, e, N |

20 30 40 50 60 70 30 90
5 1020 |] 2530 35 40 454750 [55 60 65 70 75 80 85 90

v OV ¥ v ¥ v ¥ 2ER 2NN / v v v v v oV v oV

N Cheeer 1 I

Indexing 11.4.4 Comparison of B Tree and B+ Tree

Capable of containing m (key, page pointer) pair, supposing a key
takes up the same amount of bytes as a pointer

Capable of containing 2m/3 of a B tree's (key, implicit pointer,
page pointer) (B tree is 0.67m- rank)

If the occupation ratio of a B tree is 75%, then each node of it has
0.5m children

The height of B tree is |_|Ogo_5m N—I/ﬁg,an (33,a2

(12,a3) /tﬁ?‘l) (30,a5 (48,a6)

(10,a7) ases | (20';19) II_Z/‘alO) 31a1d) || @s.a12) (50,a13)

(key, implicit pointer)

main file

_ 16 Ming Zhang “Data Structures and Algorithms”

B Chepter 11

Indexing 11.4.4 Comparison of B Tree and B+ Tree

B+ tree is used more widely

B+ tree is more efficient, with less searching levels
(relatively shorter trees)

Thus, B* tree is used more widely
- primary key indexing of database system

- B+ tree based VSAM (Virtual Storage Access Method),
substitutes the multiway tree based ISAM
40 70 90

20 30 40 50 60 70
5 1020 ‘J#} 2530 -1#].3540 -|g). 454750 bzl 55 60 12l 6570 121.75 80 -{3}.85 90
v VY vy vy vY Vv vy vy v v vV

_ 17 Ming Zhang “Data Structures and Algorithms”

Organization of VSAM

Y)
>index
control area
A , y,

] Z

ordered set
' J

datase

control interval VSAM file structure

B Cheoter 11 .
it

Indexing | Indexing

Discussion

. 1. Is there a Bt tree of order 27

- 2. Why is B tree less efficient,
compared to B+ tree?

. 3. Refer to materials of database, and
think about the usage of B+ tree.

_ 19 Ming Zhang “Data Structures and Algorithms”

Ming Zhang “Data Structures and Algorithms”

BE
= F..EF:
LEEEEE T

Data Structures
and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/
Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

